Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 June 2019 | Story Valentino Ndaba | Photo Rian Horn
Solar Panels at UFS Qwaqwa Campus
Revolutionising electricity with sun power: Solar panels at the Qwaqwa Campus.

Over the past few years the University of the Free State (UFS) has been planting panels, now the time has come to reap. Solar farms produced a return on investment in the form of R1.4 million in savings as a result of photovoltaics (PV) between January and March 2019. Nicolaas Esterhuysen, an electrical engineer at the Department of University Estates also reported a 2.34% decline in electricity usage between 2013 and 2018. 

Solar panels are the future 

According to Esterhuysen, the solution to a power crisis lies in “either becoming more energy efficient or generating our own at a cheaper cost”. All campuses have managed to save a total of R5.4 million in 2018 through producing our own power (solar PV) and actively managing the instantaneous load demand with building management system (BMS) software.

Overall, ground-mounted PV installations at all campuses contribute 2609 kilowattpeak (kWp) under standard conditions. The Bloemfontein Campus accounts for 979kWp of that amount while the South Campus generates 762kWp, with the Qwaqwa Campus producing 748kWp, and the Paradys experimental farm bringing in 120kWp to the grand total (to be commissioned June 2019).

Rooftop PVs generate electricity through the 80kWp Muller Potgieter Building, the 255kWp Bloemfontein Campus computer lab, the 35kWp Qwaqwa Campus computer lab, 135kWp Qwaqwa Campus Mandela Hall, and 416kWp Thakaneng Bridge panels. This is a total of 921kWp. 

Winter is coming with tariff terrors 

A 15.63% electricity tariff increase is projected this year in light of the annual winter adjustments commissioned by Eskom and Centlec. To gear up for the associated spike in power use over this season, University Estates advises the Kovsie community to use energy efficiently. “Think twice before switching on the heating and make sure to switch it off when you leave the office,” advises Esterhuysen.

In addition to generating electricity, saving initiatives such as implementing light-emitting diode (LED) lighting with motion sensors and actively managing demand at peak times have been implemented.

What’s next?

The next step is to rethink dated mechanical installations that are used to heat some of our older buildings. Replacing similar installations across all of the campuses are some of the ways the university intends to escalate energy efficient in future. 

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept