Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 June 2019 | Story Valentino Ndaba | Photo Rian Horn
Solar Panels at UFS Qwaqwa Campus
Revolutionising electricity with sun power: Solar panels at the Qwaqwa Campus.

Over the past few years the University of the Free State (UFS) has been planting panels, now the time has come to reap. Solar farms produced a return on investment in the form of R1.4 million in savings as a result of photovoltaics (PV) between January and March 2019. Nicolaas Esterhuysen, an electrical engineer at the Department of University Estates also reported a 2.34% decline in electricity usage between 2013 and 2018. 

Solar panels are the future 

According to Esterhuysen, the solution to a power crisis lies in “either becoming more energy efficient or generating our own at a cheaper cost”. All campuses have managed to save a total of R5.4 million in 2018 through producing our own power (solar PV) and actively managing the instantaneous load demand with building management system (BMS) software.

Overall, ground-mounted PV installations at all campuses contribute 2609 kilowattpeak (kWp) under standard conditions. The Bloemfontein Campus accounts for 979kWp of that amount while the South Campus generates 762kWp, with the Qwaqwa Campus producing 748kWp, and the Paradys experimental farm bringing in 120kWp to the grand total (to be commissioned June 2019).

Rooftop PVs generate electricity through the 80kWp Muller Potgieter Building, the 255kWp Bloemfontein Campus computer lab, the 35kWp Qwaqwa Campus computer lab, 135kWp Qwaqwa Campus Mandela Hall, and 416kWp Thakaneng Bridge panels. This is a total of 921kWp. 

Winter is coming with tariff terrors 

A 15.63% electricity tariff increase is projected this year in light of the annual winter adjustments commissioned by Eskom and Centlec. To gear up for the associated spike in power use over this season, University Estates advises the Kovsie community to use energy efficiently. “Think twice before switching on the heating and make sure to switch it off when you leave the office,” advises Esterhuysen.

In addition to generating electricity, saving initiatives such as implementing light-emitting diode (LED) lighting with motion sensors and actively managing demand at peak times have been implemented.

What’s next?

The next step is to rethink dated mechanical installations that are used to heat some of our older buildings. Replacing similar installations across all of the campuses are some of the ways the university intends to escalate energy efficient in future. 

News Archive

Consumer Science at the UFS awards three PhDs
2015-07-08

Dr Gloria Seiphetlheng, Dr Natasha Cronje, Dr Ismari van der Merwe and Prof Hester Steyn.
Photo: Leonie Bolleurs

For the first time in its history, the Department of Consumer Science in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) earned three doctorates at one graduation ceremony this year. This week three PhDs were awarded to Ismari van der Merwe, Natasha Cronje, and Gloria Seiphetlheng at the Winter Graduation that took place on the Bloemfontein Campus.

Electrochemically-activated water is widely used in the food and other industries, due to its excellent environment-friendly properties. However, it is not used in the textile industry yet, because too little research has been done to determine the possible positive and negative impact it may have on textiles.

With the thesis, The evaluation of catholyte treatment on the colour and tensile properties of dyed cotton, polyester and polyamide 6,6 fabrics,  Dr Cronje, a lecturer in the UFS’s Department of Consumer Science, and Dr Seiphetlheng from the Serowe College of Education in Botswana,  provided major new information with the thesis, Anolyte as an alternative bleach for cotton fabrics. This information is essential when considering the application of catholytes and anolytes in the textile industry.

Electrochemically-activated water divides water in catholytes and anolytes. The anolyte part is used as a disinfectant and bleach. It is not really suitable for domestic use, as it can cause colour loss in coloured textile products. However, it can be used in the hospitality industry where white sheets, towels, etc., are used and washed on a regular basis.

The catholyte part of the water has properties similar to washing powder. It can also be used in the textile industry as washing liquid.

According to Prof Hester Steyn, Head of the Department of Consumer Science and supervisor of all three PhD candidates, this electrochemically-activated water is also very eco-friendly. “It has a short shelf life. If the electrochemically-activated water isn’t utilised, it returns to normal water that wouldn’t harm the environment. No water is therefore lost, and no waste products are released that would contaminate the environment,” she says.

Dr Van der Merwe’s research focused on Degumming Gonometa postica cocoons using environmentally conscious methods. A lecturer in the Department of Consumer Science, she demonstrated that simple and environmentally-friendly methods can be used with great success to procure wild silk from the cocoons of the Gonometa postica worms living in the camel thorn trees found in the Northern Cape and Namibia.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept