Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 June 2019 | Story Valentino Ndaba | Photo Rian Horn
Solar Panels at UFS Qwaqwa Campus
Revolutionising electricity with sun power: Solar panels at the Qwaqwa Campus.

Over the past few years the University of the Free State (UFS) has been planting panels, now the time has come to reap. Solar farms produced a return on investment in the form of R1.4 million in savings as a result of photovoltaics (PV) between January and March 2019. Nicolaas Esterhuysen, an electrical engineer at the Department of University Estates also reported a 2.34% decline in electricity usage between 2013 and 2018. 

Solar panels are the future 

According to Esterhuysen, the solution to a power crisis lies in “either becoming more energy efficient or generating our own at a cheaper cost”. All campuses have managed to save a total of R5.4 million in 2018 through producing our own power (solar PV) and actively managing the instantaneous load demand with building management system (BMS) software.

Overall, ground-mounted PV installations at all campuses contribute 2609 kilowattpeak (kWp) under standard conditions. The Bloemfontein Campus accounts for 979kWp of that amount while the South Campus generates 762kWp, with the Qwaqwa Campus producing 748kWp, and the Paradys experimental farm bringing in 120kWp to the grand total (to be commissioned June 2019).

Rooftop PVs generate electricity through the 80kWp Muller Potgieter Building, the 255kWp Bloemfontein Campus computer lab, the 35kWp Qwaqwa Campus computer lab, 135kWp Qwaqwa Campus Mandela Hall, and 416kWp Thakaneng Bridge panels. This is a total of 921kWp. 

Winter is coming with tariff terrors 

A 15.63% electricity tariff increase is projected this year in light of the annual winter adjustments commissioned by Eskom and Centlec. To gear up for the associated spike in power use over this season, University Estates advises the Kovsie community to use energy efficiently. “Think twice before switching on the heating and make sure to switch it off when you leave the office,” advises Esterhuysen.

In addition to generating electricity, saving initiatives such as implementing light-emitting diode (LED) lighting with motion sensors and actively managing demand at peak times have been implemented.

What’s next?

The next step is to rethink dated mechanical installations that are used to heat some of our older buildings. Replacing similar installations across all of the campuses are some of the ways the university intends to escalate energy efficient in future. 

News Archive

Water erosion research help determine future of dams
2017-03-07

Description: Dr Jay le Roux Tags: Dr Jay le Roux

Dr Jay le Roux, one of 31 new NRF-rated
researchers at the University of the Free State,
aims for a higher rating from the NRF.
Photo: Rulanzen Martin

“This rating will motivate me to do more research, to improve outcomes, and to aim for a higher C-rating.” This was the response of Dr Jay le Roux, who was recently graded as an Y2-rated researcher by the National Research Foundation (NRF).

Dr Le Roux, senior lecturer in the Department of Geography at the University of the Free State (UFS), is one of 31 new NRF-rated researchers at the UFS. “This grading will make it possible to focus on more specific research during field research and to come in contact with other experts. Researchers are graded on their potential or contribution in their respective fields,” he said.

Research assess different techniques
His research on water erosion risk in South Africa (SA) is a methodological framework with three hierarchal levels presented. It was done in collaboration with the University of Pretoria (UP), Water Research Commission, Department of Agriculture, Forestry and Fisheries, and recently Rhodes University and the Department of Environmental Affairs. Dr Le Roux was registered for 5 years at UP, while working full-time for the Agricultural Research Council – Institute for Soil, Climate and Water (ARC-ISCW).

Water erosion risk assessment in South Africa: towards a methodological framework
, illustrates the most feasible erosion assessment techniques and input datasets that can be used to map water erosion features in SA. It also emphasises the simplicity required for application at a regional scale, with proper incorporation of the most important erosion-causal factors.

The main feature that distinguishes this approach from previous studies is the fact that this study interprets erosion features as individual sediment sources. Modelling the sediment yield contribution from gully erosion (also known as dongas) with emphasis on connectivity and sediment transport, can be considered as an important step towards the assessment of sediment produce at regional scale. 
 
Dams a pivotal element in river networks

Soil is an important, but limited natural resource in SA. Soil erosion not only involves loss of fertile topsoil and reduction of soil productivity, but is also coupled with serious off-site impacts related to increased mobilisation of sediment and delivery to rivers.

The siltation of dams is a big problem in SA, especially dams that are located in eroded catchment areas. Dr Le Roux recently developed a model to assess sediment yield contribution from gully erosion at a large catchment scale. “The Mzimvubu River Catchment is the only large river network in SA on record without a dam.” The flow and sediment yield in the catchment made it possible to estimate dam life expectancies on between 43 and 55 years for future dams in the area.
 
Future model to assess soil erosion
“I plan to finalise a soil erosion model that will determine the sediment yield of gully erosion on a bigger scale.” It will be useful to determine the lifespan of dams where gully erosion is a big problem. Two of his PhD students are currently working on project proposals to assess soil erosion with the help of remote sensing techniques.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept