Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 June 2019 | Story Valentino Ndaba | Photo Charl Devenish
Prof Cathryn Tonne
Air pollution not only costs lives, it costs money too. Pictured is Prof Cathryn Tonne presenting a guest lecture on air pollution at the Bloemfontein Campus.

Health effects associated with ambient air pollution (AAP) have been well documented. Subsequently, the relationship between pollution and financial outcomes have also become a focus for case studies globally. An Environmental Research journal article revealed that “low and middle-income countries are disproportionately affected by the global burden of adverse health effects caused by AAP”. 

A high price to pay

In 2012, high concentrations of air pollution caused 7.4% of all deaths, costing South Africa up to 6% of its Gross Domestic Product. According to the recent International Growth Centre study conducted by senior University of Cape Town researchers, this is a direct consequence of the country’s heavy dependence of fossil fuels, a source of health-damaging air pollution and greenhouse pollutants.

Stunted human and economic growth

These South African statistics are attested to by Prof Cathryn Tonne who recently presented a guest lecture on air pollution which was hosted by the University of the Free State (UFS) Business School.

“Air pollution can affect economic development through several pathways, and health is an important one. Air pollution is linked to shorter life expectancy, chronic disease, asthma exacerbation and many other health outcomes that result in absenteeism from work and school. These have large direct costs to the health system.” 

Prof Tonne says that air pollution exposure in children is linked to reduced cognitive development, with important impacts on human capital. As a result, children are not reaching their full potential in terms of neurodevelopment, which has an effect on their income prospects and the economy as a whole. 

Resolving a looming disaster

Technology may be employed to radically clean the air. Cities need to lead in the reduction of air pollution by promoting renewable energy, using active transport such as walking or cycling, and investing in infrastructure to make this safe and attractive. 

With researchers playing a major role in strengthening the case for aggressive air pollution control, the government needs to implement policies in order to control sources of air pollution. This global health and economic issue also requires individuals and communities to play their part to improve air quality.

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept