Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 June 2019 | Story Valentino Ndaba | Photo Charl Devenish
Prof Cathryn Tonne
Air pollution not only costs lives, it costs money too. Pictured is Prof Cathryn Tonne presenting a guest lecture on air pollution at the Bloemfontein Campus.

Health effects associated with ambient air pollution (AAP) have been well documented. Subsequently, the relationship between pollution and financial outcomes have also become a focus for case studies globally. An Environmental Research journal article revealed that “low and middle-income countries are disproportionately affected by the global burden of adverse health effects caused by AAP”. 

A high price to pay

In 2012, high concentrations of air pollution caused 7.4% of all deaths, costing South Africa up to 6% of its Gross Domestic Product. According to the recent International Growth Centre study conducted by senior University of Cape Town researchers, this is a direct consequence of the country’s heavy dependence of fossil fuels, a source of health-damaging air pollution and greenhouse pollutants.

Stunted human and economic growth

These South African statistics are attested to by Prof Cathryn Tonne who recently presented a guest lecture on air pollution which was hosted by the University of the Free State (UFS) Business School.

“Air pollution can affect economic development through several pathways, and health is an important one. Air pollution is linked to shorter life expectancy, chronic disease, asthma exacerbation and many other health outcomes that result in absenteeism from work and school. These have large direct costs to the health system.” 

Prof Tonne says that air pollution exposure in children is linked to reduced cognitive development, with important impacts on human capital. As a result, children are not reaching their full potential in terms of neurodevelopment, which has an effect on their income prospects and the economy as a whole. 

Resolving a looming disaster

Technology may be employed to radically clean the air. Cities need to lead in the reduction of air pollution by promoting renewable energy, using active transport such as walking or cycling, and investing in infrastructure to make this safe and attractive. 

With researchers playing a major role in strengthening the case for aggressive air pollution control, the government needs to implement policies in order to control sources of air pollution. This global health and economic issue also requires individuals and communities to play their part to improve air quality.

News Archive

Prof Tredoux turns theories regarding the formation of metals on its head
2013-09-17

 

Prof Marian Tredoux
17 September 2013

The latest research conducted by Prof Marian Tredoux of the Department of Geology, in collaboration with her research assistant Bianca Kennedy and their colleagues in Germany, placed established theories regarding how minerals of the platinum-group of elements are formed, under close scrutiny.

The article on this research of which Prof Tredoux is a co-author – ‘Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulphide melts’ – was published in Nature Communications on 6 September 2013. It is an online journal for research of the highest quality in the fields of biological, physical and chemical sciences.

This study found that atoms of platinum and arsenic create nanoclusters, long before the mineral sperrylite can crystallise. Thus, the platinum does not occur as a primary sulphur compound. The research was conducted at the Steinmann Institute of the University of Bonn, Germany, as well as here in Bloemfontein.

Monetary support from Inkaba yeAfrica – a German-South African multidisciplinary and intercultural Earth Science collaborative of the National Research Foundation (NRF) – made this research possible. Studies are now also being conducted on other metals in the precious metal group, specifically palladium, rhodium and ruthenium.

The discovery of the nanoclusters and the combination with arsenic can have far-reaching consequences for the platinum mine industry, if it can be utilised to recover a greater amount of platinum ore and therefore less wastage ending up in mine dumps. This will signify optimal mining of a scarce and valuable metal, one of South Africa’s most important export products.

For Prof Tredoux, the research results also prove thoughts she already had some twenty years ago around the forming of platinum minerals. “Researchers laughed in my face, but the evidence had to wait for the development of technology to prove it.” Young researchers were very excited at recent congresses about the findings, since the new models can bring new insights.

“Chemistry researchers have been talking about platinum element clusters in watery environments for quite a while, but it was thought that these would not appear in magmas (molten rock) due to the high temperatures (>1 000 degrees celsius).”

Prof Tredoux has already delivered lectures at congresses in Scotland, Hungary, Sweden and Italy on this research.

Read the article at: http://www.nature.com/ncomms/2013/130906/ncomms3405/full/ncomms3405.html

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept