Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 March 2019 | Story Rulanzen Martin | Photo Rulanzen Martin
IAC members
The IAC from left; Dr Ivor Zwane, Reneë Beck, Gus Silber, Luhlumelo Toyana, Dr Adri van der Merwe, Nick Efstathiou, Avela Ntsongelwa, Prof Colin Chasi, HOD Communication Department, Alzane Narrain, Nomvo Bam and Dr Gustav Puth.

Building ties with industry experts provides greater prospects for bursaries, prizes for top students, as well as informal internships. This is why the Department of Communication Science at the University of the Free State (UFS) took the bold and commendable step of soliciting the expertise of an Industry Advisory Council (IAC).

“As a department we believe it is important to stay in touch with the industry to ensure that we, and the work we do, stays relevant in order to increase the chances of making our students preferred candidates in the workplace,” said Dr Adri van der Merwe, lecturer at the department.

The advisory panel consisted of Reneë Beck, founder and CEO of Pink Lemon; Nick Efstathiou, newly appointed CEO of Central Media Group; DDr Ivor Zwane, chairman of the board for Small to Medium Enterprise Development; education journalist Gus Silber; journalist Alzane Narrain; Dr Gustav Puth, Academic Director of Post-Graduate Executive Education at Monash South Africa; photographer Luhlumelo Toyana; Avela Ntsongelwa,master's student and Nomvo Bam.

The initiative also created a platform for the students to engage with IAC members. The Department hosted the IAC on 6 March 2019 on the UFS Bloemfontein Campus.

Advice to assist in improving curriculum

“The IAC members’ feedback will influence our curriculum, both in the short term when we begin to shift emphasis on certain matters, as well as in the longer term when we replace or expand on specific modules,” Van der Merwe said.

The advice given by IAC members will be taken very seriously. “We have captured all their input on video, and will now, in preparation for our strategic planning session later this year, analyse and prioritise the actions we need to implement their proposals.” she said. The students are also represented on the IAC in order to hear and take into consideration what the students have to say about how the curriculum can be improved to prepare them more effectively for the workplace. 

The department plan on hosting the IAC yearly.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept