Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 March 2019 | Story Valentino Ndaba
Student from the Umoja Buddy programme
Students from all corners of the globe forge lasting bonds through the Umoja Buddy Programme.

Let’s say you find yourself attending a university in a different country where you need to adjust to a new language, culture, environment, friends, lecturers, curriculum, and lifestyle. Sounds like a challenging leap of faith, right? However, the Umoja Buddy Programme (UBP) makes this transition a whole lot easier for international students.

If you were an international student at the University of the Free State’s (UFS) Bloemfontein Campus, you would be assigned a buddy who is familiar with student life and community. The Office for International Affairs in collaboration with Student Affairs designed this programme for all incoming exchange students to feel welcome and at home.

The UBP is part of the university’s endeavours to advance internationalisation at home, which was entrenched in the 2018-2022 UFS Internationalisation Strategy. Underlying is the idea to provide UFS students with international experiences on their home campus.

Integration at the heart of internationalisation


At the Bloemfontein Campus launch of the UBP on 14 February 2019, UFS Rector and Vice-Chancellor, Prof Francis Petersen, welcomed this year’s cohort of first-time international students and highlighted the importance of the UBP. “In essence, it aims to connect international and local students through meaningful lifelong friendships and to foster their academic, social and cultural integration at the UFS,” he said.

Prof Petersen strongly believes in the programme’s ability to facilitate “cross-fertilisation of ideas and intercultural exposure and learning”, which further enhances the quality of graduates produced by the institution.

A student is a student through other students


Lesotho-born Precious Lesupi volunteered as one of the 48 ambassadors to prevent others from experiencing the difficulties she did when she arrived at UFS. “I have been in a situation where you get to a place and you know nothing about the people there, especially the culture, and the way everything is done because you come from a totally different place, so it’s really hard to adjust.”

Lebohang Lesenyeho, who hails from Botshabelo in the Free State, expressed similar sentiments with fellow ambassador,Kweku Gavor. He said he “looks forward to “building a meaningful relationship.” Kweku who has Ghanaian origins believes that, “you cannot put a price on learning about another person and ways you react to certain situations.”


Umoja is a verb


True to the word umoja, which means “unity and the spirit of togetherness”, the programme has proved to bring together students from diverse backgrounds in the pursuit of academic excellence. The goal can be best achieved when complemented by a holistic social and cultural experience.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept