Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 March 2019 | Story Rulanzen Martin | Photo Rulanzen Martin
CGAS staff with Jessica Lynn
From left: Ankia Bradfield, Sihle Salman, Jessica Lynn, Dr Nadine Lake, programme director, Gender Studies, and Dr Stephanie Cawood, director of CGAS after the talk.

For Jessica Lynn, a transgender activist, referencing the Butterfly to tell her journey, is the perfect metaphor to raise awareness of transgender issues. The Centre for Gender and Africa studies (CGAS) at the University of the Free State (UFS) hosted Lynn at a seminar titled, The Butterfly Project.

The CGAS invited Lynn in an effort to educate and inform students of her own experience as a parent living as a transgender woman. She is a global ambassador at the Kinsey Institute.

Coping mechanisms to escape reality

Born Jeffery Alan Butterworth in 1965, Lynn has become a world-renowned, dynamic and hard-hitting transgender activist. Lynn started her seminar off with: “Who here knows someone that is part of the transgender community?” It was evident that not many people know someone who is transgender. “In the United States only 16% of the population knows someone who is transgender,” she said.

“Everybody has their own story, just like I am only one of the 1.4 million transgender stories in the United States (US).” As a child of English immigrants to the US she was raised as a boy. “At a very young age I wanted to be girl,” she says, “but in 1969 it was not something that was spoken about..”

She started doing photography, painting and sports to stop the feelings she had to become a girl. She became obsessed with painting. “When I am painting that eagle I became that eagle in order to escape my reality.” She came out to her children as transgender during December 2009. She fully transitioned in 2010.

Lynn is the mother of three boys and was married to their biological mother. A botched Texas court restricted her access to her youngest child and to this day she has not been able to see her son.

Transgender discussions on rise in South Africa

“Transgender discussions have been less salient than conversations around homosexuality in South Africa,” said Dr Nadine Lake, programme director for Gender Studies at the UFS.  “But it is clear that raising awareness around transgender issues is starting to take more ground.”

Transgender identity and trans-body rights emerged during the #RhodesMustFall movement in 2015. “It was university students that were primarily driving the transformation agenda,” said Dr Lake.

The seminar on 20 February 2019 was an emotional, explosive and honest narrative of Jessica Lynn cocooning from Jeffrey Alan Butterworth to the phenomenal women she is today.

 

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept