Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 March 2019 | Story Rulanzen Martin | Photo Rulanzen Martin
CGAS staff with Jessica Lynn
From left: Ankia Bradfield, Sihle Salman, Jessica Lynn, Dr Nadine Lake, programme director, Gender Studies, and Dr Stephanie Cawood, director of CGAS after the talk.

For Jessica Lynn, a transgender activist, referencing the Butterfly to tell her journey, is the perfect metaphor to raise awareness of transgender issues. The Centre for Gender and Africa studies (CGAS) at the University of the Free State (UFS) hosted Lynn at a seminar titled, The Butterfly Project.

The CGAS invited Lynn in an effort to educate and inform students of her own experience as a parent living as a transgender woman. She is a global ambassador at the Kinsey Institute.

Coping mechanisms to escape reality

Born Jeffery Alan Butterworth in 1965, Lynn has become a world-renowned, dynamic and hard-hitting transgender activist. Lynn started her seminar off with: “Who here knows someone that is part of the transgender community?” It was evident that not many people know someone who is transgender. “In the United States only 16% of the population knows someone who is transgender,” she said.

“Everybody has their own story, just like I am only one of the 1.4 million transgender stories in the United States (US).” As a child of English immigrants to the US she was raised as a boy. “At a very young age I wanted to be girl,” she says, “but in 1969 it was not something that was spoken about..”

She started doing photography, painting and sports to stop the feelings she had to become a girl. She became obsessed with painting. “When I am painting that eagle I became that eagle in order to escape my reality.” She came out to her children as transgender during December 2009. She fully transitioned in 2010.

Lynn is the mother of three boys and was married to their biological mother. A botched Texas court restricted her access to her youngest child and to this day she has not been able to see her son.

Transgender discussions on rise in South Africa

“Transgender discussions have been less salient than conversations around homosexuality in South Africa,” said Dr Nadine Lake, programme director for Gender Studies at the UFS.  “But it is clear that raising awareness around transgender issues is starting to take more ground.”

Transgender identity and trans-body rights emerged during the #RhodesMustFall movement in 2015. “It was university students that were primarily driving the transformation agenda,” said Dr Lake.

The seminar on 20 February 2019 was an emotional, explosive and honest narrative of Jessica Lynn cocooning from Jeffrey Alan Butterworth to the phenomenal women she is today.

 

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept