Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 March 2019 | Story Thabo Kessah | Photo Thabo Kessah
Teboho Mofokeng
Postgraduate Student Council and SRC member, Teboho Mofokeng, says one degree is not enough.

Postgraduate studies play a crucial and critical role in the missions of our universities. They also contribute to the key and central mandate of the university – knowledge production, the dissemination, and application thereof.

The Campus Principal, Dr Martin Mandew, expressed this view during a welcoming function for postgraduate students on the Qwaqwa Campus. “Our Postgraduate School is the gateway that enables entry into higher degrees and qualifications. It is an extremely valuable resource and support reference point which is at the disposal of the students,” he said.

Postgraduate research and national development

Dr Mandew added that postgraduate research plays a very important role in national development, as it develops systematic investigation skills among young graduates for the purpose of making a contribution to what he termed ‘the national system of innovation’. “It also ensures that the country is competitive and enables the generation of knowledge that is responsive to societal needs, among others,” he said.

“Doing postgraduate studies is not easy,” he added. “Challenges that postgraduate students have to contend with, include funding and financial problems; lack of equipment; inadequate library facilities; access to research materials, and many more,” Dr Mandew said.

Support broadens knowledge and skills

In detailing the services offered by the Postgraduate School, the Director, Prof Witness Mudzi, assured students that they would experience an enabling environment to excel in the pursuit of their academic quests. “We will provide additional support to that provided by facilities and departments in the form of workshops, courses, and other presentations, which will equip the students with the requisite skills for successful completion of their postgraduate education.”

“The workshops and courses we offer are aimed at broadening your knowledge of research processes and methods. This would then positively influence throughput, publications, and the quality of research produced,” Prof Mudzi said to a packed venue.

Speaking on behalf of the SRC and the Postgraduate Student Council, Chairperson Teboho Mofokeng said that the event was held at a time when final-year students were asking themselves if it was worth continuing with postgraduate studies. “Do not take the decision to continue with your postgraduate studies lightly,” he said. “We work in a knowledge economy where specialised skills have significant commercial value. This means that in today’s competitive job market, it is often not enough to have only one degree,” said Mofokeng, a beneficiary of the school’s Mentorship Programme and master’s student specialising in Parasitology.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept