Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 March 2019 | Story Xolisa Mnukwa
Career Services
Front row from left to right: Magdalena Matthys (intern), Lavhelesani Mpofu (intern). Back row from left to right: Carmenita Redcliffe (Chief Officer: Company Relations), Nthabiseng Khota (intern), Belinda Janeke (Head of Career Services and Student Relations).

The Career Services office opened its facilities in 2007 as a help desk on the UFS Bloemfontein Campus at the Sasol Library, due to the increasing number of students looking for employment opportunities. The team has grown over the years and now consists of two chief officers, Belinda Janeke and Carmenita Redcliffe, two research assistants, 15 volunteers and seven career ambassadors.  The portfolio of company relations is the latest addition to the team that runs a number of new initiatives and events that aim to enhance overall marketing and services offered by the department.

In January this year, Career Services hosted a corporate breakfast in Johannesburg.  Rector and Vice-Chancellor, Prof Francis Petersen, led a delegation consisting of Vice Rector: Institutional Change, Student Affairs, Prof Puleng LenkaBula, Dean of Student Affairs, Pura Mgolombane, Director of Institutional Advancement, and Director of Communication and Marketing, Annamia van den Heever, and Lacea Loader respectively . The event was an initiative that sought to motivating companies, donors and funders to employ and fund top UFS graduates.

According to Belinda Janeke, keeping UFS students informed about career opportunities and equipping them with the skills and grit to make them employable, finding employment or starting their own business is the department’s ultimate goal.



News Archive

UFS research could light up South African homes
2016-01-21

Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology, is using her research to provide solutions to the energy crises in South Africa.

A young researcher at the university is searching for the solution to South Africa’s energy and electricity problems from a rather unlikely source: cow dung.

“Cow dung could help us power South Africa,” explains Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology.

Reitumetse’s research is trying to understand how the bacteria works that is responsible for producing biogas.

“Biogas can be used for cooking, heating, lighting and powering generators and turbines to make electricity. The remaining liquid effluent can fertilise crops, as it is high in nitrogen, phosphorus and potassium.”

By using cow dung and food waste to produce biogas, we will be able to lower greenhouse gases.

Biogas is produced in a digester - an oxygen-free space in which bacteria break down or digest organic material fed into the system. This process naturally produces biogas, which is mainly a mixture of methane and carbon dioxide.

“Many countries, such as Germany and the United States, have begun generating electricity from cow dung and food waste, through a process known as biogas production. In South Africa, a number of industries, including waste-water treatment facilities and farms, have caught on to this technology, using it to generate heat and to power machines.”

Until recently the world has relied heavily on electricity derived from fossil fuels such as coal, natural gas and oil. Once these fuels have been extracted from underground reservoirs, they are treated or cleaned, transported to power plants and transformed into the electricity that will reach your house. Fossil fuels are considered a ‘dirty’ energy source which gives off greenhouse gases when burned. Those gases are the major contributing factor to climate change.

“We know very little about the interaction of the bacteria inside the biogas digester. To use biogas as a sustainable fuel source, we need to understand and describe the bacteria population and growth dynamics inside the digester to produce biogas optimally. Currently we are testing a variety of feedstock, including bran, maize and molasses, for biogas production potential, as well as optimising the conditions leading to maximum biogas production. We are also exploring the potential to use the effluent as fertiliser on local farms. The ultimate goal is to have biogas systems that will supply our university with clean energy.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept