Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 March 2019 | Story Ruan Bruwer
Ruben Kruger
Ruben Kruger, one of the four Kovsie team members who helped his side to the second place at the national tennis club championship.

The impressive tennis team of the University of the Free State, the national student title holders, came very close to also being crowned as the national club champions on Monday (25 February 2019).

The team from the University of the Free State lost to Marks Park in the final of the Top guns national club tournament at Sun City by two games to one. Matches consisted of men’s doubles, women’s doubles, and mixed doubles, with optional rotation at the end of each set.

The team members from the UFS were Arne Nel, Ruben Kruger, Lienke de Kock, and Ester de Kock.

In the finals, the UFS won their one match in the mixed doubles thanks to the double pair of De Kock (Lienke) and Kruger.  

In the second version of the tournament 18 of the best clubs, including all the provincial tennis champs, competed for the honours as national club champions. The students’ second spot was an improvement on the fourth position the team achieved last year. That team also included Nel and De Kock. Last year they also lost to Marks Park, on that occasion in the play-offs for the third position.

On Saturday and Sunday, the UFS defeated both Aces (Limpopo) and Old Mutual (Western Cape) by 3-0 but lost to Brighton from KwaZulu-Natal in die final round-robin match.

In the semi-finals they were too strong for Kuils River of the Western Cape, winning by 2-0.

The team received prize money of R10 000 as runners-up plus R10 000 to be shared among the players.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept