Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 May 2019 | Story Igno van Niekerk | Photo Stephen Collett
Digital storytelling
Collaborating for the common good are from left: Willem Ellis, Karen Venter, Dr Deidre van Rooyen, Prof Hendri Kroukamp, Bishop Billyboy Ramahlele, and Dr Johan van Zyl.

Prof Hendri Kroukamp, Dean of the Faculty of Management Sciences quoted the Cat Stevens song I can’t keep it in, to capture the excitement surrounding the opening of a Digital Storytelling Lab on the Bloemfontein Campus on 10 May 2019.

After months of hard work by Dr Deidre van Rooyen, Willem Ellis, Karen Venter, as well as the staff of the University of the Free State’s (UFS) Centre for Development Support, the Common Good First lab was completed just in time for the launch attended by about 50 delegates from other South African universities, as well as private and public institutions.

Stories meet technology

In a message, from Prof Puleng LenkaBula, Vice-Rector: Institutional Change, Student Affairs, and Community Engagement, informed the audience that the launch heralded the joining of the old world of stories with the new world of digital technology. Julie Adair, Director of Digital Collaboration at Glasgow Caledonian University, Scotland, welcomed the UFS as a partner to this international social innovation collaborative project in a video message. 

Dr Van Rooyen, the project manager for the UFS, explained how she got involved in the Common Good First project, what the benefits of digital storytelling are, as well as what opportunities the lab creates for cooperation between role players involved in social innovation projects. 

Why the Common Good First lab?

The purpose of the lab is to create a digital network to identify, showcase and connect social innovation projects in South Africa to one another and to universities around the world for research, student engagement and learning and teaching. The lab has been fitted with state-of-the-art equipment for recording and digitising the stories that result from social innovation projects.

In a live Skype session with Dr Il-Haam Petersen, Postdoctoral Research Fellow at the Human Sciences Research Council (HSRC), and some of the recent successes of the digital stories in Philippi in the Western Cape were shared.

Bishop Billyboy Ramahlele, UFS Director Community Engagement did the final honours by cutting the ribbon, declaring the lab open, and sharing the dream that the work done in this lab will contribute to positive relationships and cooperation between the university and the community, in making not only the university, but the country and the world a better place.


News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept