Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 May 2019 | Story Igno van Niekerk | Photo Stephen Collett
Digital storytelling
Collaborating for the common good are from left: Willem Ellis, Karen Venter, Dr Deidre van Rooyen, Prof Hendri Kroukamp, Bishop Billyboy Ramahlele, and Dr Johan van Zyl.

Prof Hendri Kroukamp, Dean of the Faculty of Management Sciences quoted the Cat Stevens song I can’t keep it in, to capture the excitement surrounding the opening of a Digital Storytelling Lab on the Bloemfontein Campus on 10 May 2019.

After months of hard work by Dr Deidre van Rooyen, Willem Ellis, Karen Venter, as well as the staff of the University of the Free State’s (UFS) Centre for Development Support, the Common Good First lab was completed just in time for the launch attended by about 50 delegates from other South African universities, as well as private and public institutions.

Stories meet technology

In a message, from Prof Puleng LenkaBula, Vice-Rector: Institutional Change, Student Affairs, and Community Engagement, informed the audience that the launch heralded the joining of the old world of stories with the new world of digital technology. Julie Adair, Director of Digital Collaboration at Glasgow Caledonian University, Scotland, welcomed the UFS as a partner to this international social innovation collaborative project in a video message. 

Dr Van Rooyen, the project manager for the UFS, explained how she got involved in the Common Good First project, what the benefits of digital storytelling are, as well as what opportunities the lab creates for cooperation between role players involved in social innovation projects. 

Why the Common Good First lab?

The purpose of the lab is to create a digital network to identify, showcase and connect social innovation projects in South Africa to one another and to universities around the world for research, student engagement and learning and teaching. The lab has been fitted with state-of-the-art equipment for recording and digitising the stories that result from social innovation projects.

In a live Skype session with Dr Il-Haam Petersen, Postdoctoral Research Fellow at the Human Sciences Research Council (HSRC), and some of the recent successes of the digital stories in Philippi in the Western Cape were shared.

Bishop Billyboy Ramahlele, UFS Director Community Engagement did the final honours by cutting the ribbon, declaring the lab open, and sharing the dream that the work done in this lab will contribute to positive relationships and cooperation between the university and the community, in making not only the university, but the country and the world a better place.


News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept