Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 May 2019 | Story Valentino Ndaba | Photo Pexels
Prof Melanie Walker
Fostering human capabilities in universities may potentially transform education, says Prof Melanie Walker.

Education is at the centre of human life, and has the potential to be a crucial support for democratic life. Prof Melanie Walker’s recent research paper strikes a balance in dealing with people, education and the implications for democracy through the lens of human capabilities theory and practice and her own research.

People and papers

In her capacity as the SARChI Chair in the Higher Education and Human Development Research Programme at the University of the Free State (UFS), Prof Walker recently published a paper titled: Defending the Need for a Foundational Epistemic Capability in Education. It appeared in the special issue of the Journal of Human Development and Capabilities in honour of renowned Nobel Laureate Amartya Sen’s 85th birthday.

Nurturing epistemic justice

Within the context of existing literature such as that of Sen’s concern with the value of education on the one hand, and public reasoning on the other, Prof Walker argues for a foundational epistemic capability to shape the formal education landscape – as well as quality in education – by fostering inclusive public reasoning (including critical thinking) in all students. It would contribute to what Sen calls the ‘protective power of democracy’ and shared democratic rights, which, he argues, are strongly missed when most needed.

“Sen’s approach asks us to build democratic practices in our university and in our society in ways which create capabilities for everyone. If our students learn public reasoning in all sorts of spaces in university, including the pedagogical, they may carry this into and back to society,” she said.

Educating for equality

Empowering society and fighting for justice are some of the crucial contributions made possible through fostering the epistemic capability of all students. “The capability requires that each student is recognised as both a knower and teller, a receiver and a contributor in critical meaning and knowledge, and an epistemic agent in processes of learning and critical thinking,” states Prof Walker.

In a young democracy like South Africa’s, inclusive public reasoning becomes all the more essential in order to achieve equality, uphold rights and sustain democracy as enshrined in the constitution, thereby improving people’s lives. 

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept