Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 May 2019 | Story Thabo Kessah | Photo Ian van Straaten
Dr Thandi Gumede
Dr Thandi Gumede graduated with a PhD in Polymer Science. She is from Intabazwe, Harrismith.

The Qwaqwa Campus of the University of the Free State was a hive of activity on 17 and 18 May 2019, when over 800 degrees, diplomas, and certificates were conferred on deserving achievers. These included six PhDs and 14 master’s degrees across the four faculties.

Congratulating the graduates on both days, was Africa’s youngest PhD and Industrial Psychology lecturer, Dr Musawenkosi Saurombe, and Prof Francis Petersen, Rector and Vice-Chancellor.

Be like heat

Dr Saurombe started her address by relating her school journey that saw her starting Grade 1 at age 5, thus later matriculating at the age of 15, having skipped Grades 3 and 10. She went on to emphasise the importance of building an honourable character.

“As a graduate, you will soon realise that your degree is useless if you do not have character,” she said to an attentive audience that continued to marvel at her remarkable school history. She encouraged graduates to be like heat that cannot be seen but can only be felt. “Noise can often be seen and heard, but it cannot be felt. However, while heat cannot always be seen, it is always felt. Be like heat and may your presence always be felt,” she said.

Do not focus on yourself

Prof Francis Petersen also encouraged graduates to look beyond their degrees by developing a set of critical values.
 
“For us as the university, this ceremony is not just about your degrees. It is about the values that you must live by,” he said. “As a graduate of the UFS, do not just believe what you are told. Ask questions and engage critically. Secondly, do not just focus on yourself. Remember that you are part of a community and it is your responsibility to make our world a better place for others. You need to be socially responsive to the needs of your community. Thirdly, remember that integrity plays a very important role. This will determine how others value you,” he said.

The two ceremonies also saw three current SRC members graduating. They are Lebohang Miya (BEd FET – Accounting and Business Studies), Duduzile Mhlongo (BA – Geography and isiZulu), and Mhlongo Sinemfundo (BA – Geography and isiZulu).

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept