Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 May 2019 | Story Ruan Bruwer | Photo Zimbio
Simoné Gouws
Simoné Gouws (right) in action for the Protea hockey team last year. The defender will be a key player for the Kovsie team in the Varsity hockey competition.

The coach of the first women’s hockey team of the University of the Free State is confident that they can do well in the upcoming Varsity hockey tournament.

The competition works on a gender-rotation system every year. This will be the fourth term of Varsity hockey for women. The Kovsie women has a good record. In 2013 they ended fourth, in 2015 they were second, and in 2017 fifth.

The Kovsies will be facing the University of Johannesburg (UJ) on Friday 3 May 2019. On Saturday, the Maties is lying in wait and the North-West University on Sunday.

“I am confident that we will be doing well. If each player plays her role very well, we should reach the semi-final stage. We have put in the hard work, with good progress. We have played three matches so far in 2019 and haven’t been on the losing side yet,” said Luke Makeleni, head coach.

In friendlies last month, the Kovsies drew to NWU (0-0), defeated UJ by 3-1, and had a good win (6-0) against the Johannesburg club, Shumbas.

“We have quite an experienced squad, with seven survivors from the previous Varsity hockey competition (in 2017), so they know what is expected,” Makeleni said. He is in his third year of coaching the women.

The Kovsies have several players with national experience. Simoné Gouws made her debut for the Proteas last year. Casey-Jean Botha, Shindré-Lee Simmons, Antonet Louw, and Lizanne Jacobs have all represented the South African U21 team. Botha is also in the Protea squad. 

■ The Kovsie team: Wiané Grobler, Chane Hartel, Mikayla Claassen, Anke Badenhorst, Casey-Jean Botha, Shindré-Lee Simmons, Esté van Schalkwyk, Nadia van Staden, Antonet Louw, Michelle Ngoetjane, Heraldine Olin, Lizanne Jacobs, Refilwe Ralikontsane, Mielanka van Schalkwyk, Nela Mbedu, Simoné Gouws, Frances Louw, Kia-Leigh Erasmus.

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept