Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 May 2019 | Story Ruan Bruwer | Photo Zimbio
Simoné Gouws
Simoné Gouws (right) in action for the Protea hockey team last year. The defender will be a key player for the Kovsie team in the Varsity hockey competition.

The coach of the first women’s hockey team of the University of the Free State is confident that they can do well in the upcoming Varsity hockey tournament.

The competition works on a gender-rotation system every year. This will be the fourth term of Varsity hockey for women. The Kovsie women has a good record. In 2013 they ended fourth, in 2015 they were second, and in 2017 fifth.

The Kovsies will be facing the University of Johannesburg (UJ) on Friday 3 May 2019. On Saturday, the Maties is lying in wait and the North-West University on Sunday.

“I am confident that we will be doing well. If each player plays her role very well, we should reach the semi-final stage. We have put in the hard work, with good progress. We have played three matches so far in 2019 and haven’t been on the losing side yet,” said Luke Makeleni, head coach.

In friendlies last month, the Kovsies drew to NWU (0-0), defeated UJ by 3-1, and had a good win (6-0) against the Johannesburg club, Shumbas.

“We have quite an experienced squad, with seven survivors from the previous Varsity hockey competition (in 2017), so they know what is expected,” Makeleni said. He is in his third year of coaching the women.

The Kovsies have several players with national experience. Simoné Gouws made her debut for the Proteas last year. Casey-Jean Botha, Shindré-Lee Simmons, Antonet Louw, and Lizanne Jacobs have all represented the South African U21 team. Botha is also in the Protea squad. 

■ The Kovsie team: Wiané Grobler, Chane Hartel, Mikayla Claassen, Anke Badenhorst, Casey-Jean Botha, Shindré-Lee Simmons, Esté van Schalkwyk, Nadia van Staden, Antonet Louw, Michelle Ngoetjane, Heraldine Olin, Lizanne Jacobs, Refilwe Ralikontsane, Mielanka van Schalkwyk, Nela Mbedu, Simoné Gouws, Frances Louw, Kia-Leigh Erasmus.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept