Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 May 2019 | Story Ruan Bruwer
Lynique Beneke
Lynique Beneke, long jump athlete of the University of the Free State and the national women’s champion seven times in a row, hopes to qualify for the World Championships.

The long jumper, Lynique Beneke, dreams of going to another Olympic Games and jumping over seven metres before she retires.

In between, there is still a World Championship later in the year for which she is trying to qualify. The qualifying standard is 6,72 m, not far from the 6,64 m she achieved at the national athletics championships at the end of April, which earned her a seventh consecutive national crown. At the time, it was the seventh best globally. She will have to qualify in Europe, as the South African season is over.

“With my faith as my biggest support, my mom and I both dreamed about me jumping exactly the same distance of 7,03 m! That is my big goal. I know I can do that,” Beneke (28) said. Her personal best is 6,81 m.

Special bond with coach


She is currently studying Education (BEd Senior and FET phase). “At this moment, I’m focusing on finishing my degree and enjoying my athletics. I want to give my athletics a fair chance, as I am only getting into prime shape now at this age. Once I’m done with athletics, I will focus on a career.”

According to Beneke, a 2016 Olympian and the Kovsie Senior Sportswoman of the Year for 2018, consistency is the name of her game. “I show up, even when I don’t feel like it. I push myself every day. I feel I have so much left in the tank, and that motivates me. All the glory to God.”

She is married to the hurdler, PC (also a Kovsie student). They moved from Gauteng to Bloemfontein at the end of 2017.

“My coach, Emmarie Fouché, was the big influence (coming here). I started working with her at the end of 2015. We work perfectly together; we are both women and have the same work ethic. She understands me. We are very close, and I think that is what makes the difference.”


News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept