Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 May 2019 | Story Lacea Loader | Photo Robin Thuynsma
Mr Nikile Ntsababa
Mr Nikile Ntsababa.

Mr Nikile Ntsababa took up the position of Registrar at the University of the Free State (UFS) on 1 May 2019. His appointment was approved by the UFS Council during its quarterly meeting on 15 March 2019.
 
“Mr Ntsababa is an experienced and knowledgeable university registrar with 10 years of senior management experience in institutional compliance, regulatory compliance, academic administration, and university records management. His history of senior roles in the higher-education sector has the advantage of a very good understanding regarding the dynamics, context, and challenges that the position of registrar brings,” says Prof Francis Petersen, Rector and Vice-Chancellor of the UFS.
 
He holds a Postgraduate Diploma in Records and Archives Management from the University of Fort Hare, a Master of Public Administration from Nelson Mandela University, and a Bachelor of Arts in Communication from the University of Fort Hare. Some of the further certification and short courses he has completed includes a Certificate in International Higher Education Management from Vanderbilt University, Tennessee State in the USA, and a Compliance Management Certificate from the University of Cape Town. He is a Certified Ethics Officer.
 
Mr Ntsababa was Registrar at the Cape Peninsula University of Technology (CPUT) from April 2012 to April 2019; before that he was Deputy Registrar at CPUT from April 2009 to March 2012. He also served as Director of Governance at the University of Fort Hare from September 2007 to March 2009, and as Faculty Manager: Management and Commerce at the University of Fort Hare from January 2004 to August 2007.   
 
“I look forward to working at the UFS and to share my knowledge and experience of higher-education legislation and the associated regulatory processes, requirements, and trends in the higher-education sector,” says Mr Ntsababa.

Released by:

Lacea Loader (Director: Communication and Marketing)

Telephone: +27 51 401 2584 | +27 83 645 2454

Email: news@ufs.ac.za | loaderl@ufs.ac.za

Fax: +27 51 444 6393



News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept