Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 May 2019 | Story Eugene Seegers | Photo Barend Nagel
KovsieApp Landing Page
The new KovsieApp’s landing page.

The new KovsieApp will be available from 31 May 2019. This mobile app will be compatible with both iPhone and Android devices and will enable users to access information from the UFS website on their mobile phones at no cost while connected to the on-campus Wi-Fi network.

The first roll-out of the KovsieApp will be primarily aimed at students, who will be able to access their personal information, such as study records, marks, class and exam timetables, mini fee statement, etc. However, for security reasons and privacy requirements, the student will have to register on the app before such information is made available. Later iterations will have additional functionality for staff, for whom space has already been allocated in the app.

Positive Response

During the beta testing phase, a number of students were included in the focus group. Their feedback highlights the value of the app for Kovsie students.

“The app is very smooth and easy to use. Compared to other apps, it has so much more useful information that a student needs, such as checking Gradebook or your financial statement wherever you are. One of the key aspects is that it is data-friendly, even when on mobile data,” said Omar-Raphael Tabengwa, SRC: International Student Council, in his response.

Katleho Lechoo, SRC for Sport on the Bloemfontein Campus, said: “This app is something the students have been looking for, and it brings the university to your pocket. It is convenient to use, especially for those who have to access their academics while travelling for sport. We can’t wait for it to hit the ground running very fast.”

Nomathemba Pakade, Deputy President of the South Campus SRC, had this to say: “For me, this app means convenience and it is going to save me a lot of time, because I can access almost everything on my phone. We couldn't have asked for anything better at this moment.”

Lastly, Mvuyo Madlala, SRC Secretary for the South Campus, said, “The KovsieApp is very efficient and includes all the essential information that a student might require.”

Data accuracy a must

Since students will log in with an OTP sent to the cellphone number linked to their profile, the accuracy of a student’s data will be critical to the correct functioning of the KovsieApp, especially when it comes to personalised information such as timetables and marks. Therefore, students are encouraged to update their contact details and other information, using the Student Self-service page on KovsieLife. Alternatively, you can visit Student Academic Services for assistance (remember to take along your ID or passport as identification). Any errors in a student’s data can cause the KovsieApp to function unpredictably, with the result that the person will be restricted to a public view with limited access to basic personal information.

The future is here!

Get ready to experience the next generation of information access: Download your KovsieApp today!

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept