Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 November 2019 | Story Portia Arodi | Photo Charl Devenish
Koshuis

The University of the Free State (UFS) invites off-campus accommodation service providers in Bloemfontein who offer accommodation to its students, to apply for accreditation.

“The decision to accredit off-campus accommodation service providers stems from concerns by the university management about the safety of students and the conditions under which some of our students live in off-campus accommodation.

Student accommodation is a significant aspect of the success of the UFS, and consequently good quality accommodation is important for each individual student to be successful in his/her studies,” says Mr Quintin Koetaan, Senior Director: Housing and Residence Affairs at the UFS.

The accreditation process entails a list of primary requirements, drafted with the cognisance of the Mangaung Metropolitan Municipality in terms of off-campus accommodation, which private providers must adhere to in order to be accredited by the university. The requirements are in line with the Policy on the Minimum Norms and Standards for Student Housing at Public Universities (Government Gazette 39238, dated 29 September 2015).

According to Koetaan, the norms and standards as set out in the policy establish the foundation and assessment criteria for such accreditation of service providers by the UFS. “It has become necessary for the UFS to have a policy on off-campus accommodation in order to protect the rights and interests of our students and that of the university,” says Koetaan.

Landlords and agents are also advised to become more involved in their student homes and to ensure that their properties are in good condition and secure enough for students to live in,” says Koetaan.

Private off-campus accommodation service providers have until 6 December 2019 to apply for accreditation. Please contact Ms Portia Arodi at tyhalitip@ufs.ac.za or on +27 51 401 2118 for more information

Private off-campus accommodation service providers have until 6 December 2019 to apply for accreditation.

More information and application documentation for accreditation can be obtained by sending an email to tyhalitip@ufs.ac.za or by visiting President Steyn Annex, Office 128.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept