Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 November 2019 | Story Xolisa Mnukwa | Photo Sonia Small
Graduations
The UFS will honour all graduates during the upcoming graduation ceremonies to be held in the Callie Human Centre on the UFS Bloemfontein Campus from 9 to 11 December 2019.

The University of the Free State (UFS) will confer a number of qualifications on graduates at the upcoming graduation ceremonies on the Bloemfontein Campus from 9 to 11 December 2019. 

A total of 1 216 graduates across all UFS faculties will gather at the Callie Human Centre to be addressed by Chief Director: Teaching and Learning Development in the Department of Higher Education, Science and Technology, Dr Whitty Green; 2019 Kovsie Ambassador Award winner, Ms Louzanne Coetzee; and former Managing Director of De Beers Consolidated Mines and member of the UFS Council, Mr David Noko. 

Judge in the Supreme Court of Appeal and Chancellor of the Central University of Technology (CUT), Justice Mahube Molemela, will also be addressing the audience during the 2019 December graduation ceremonies.

For more information about the upcoming celebrations, visit the UFS graduation ceremonies page.
Graduates can read through the Bloemfontein Graduations: Preparing for Graduations Frequently Asked Questions (FAQs), which contains the necessary information for graduates to note during the graduation processions.
 
Graduation ceremonies for the different faculties will take place on the following dates:
Bloemfontein Campus

9-11 December 2019

9 Dec 2019
14:30: South Campus: Open Distance Learning 
Certificates and diplomas

Graduations Programme: South Campus: Open Distance Learning

10 Dec 2019
09:00: Faculties of Education, the Humanities, Law and Theology and Religion 
All certificates, diplomas, Bachelor’s degrees, and Honours degrees
Graduations Programme: Faculties of Education, The Humanities, Law, Theology and Religion

14:30: Faculties of Economic and Management Sciences  and Natural and Agricultural Sciences 
All certificates, diplomas, Bachelor’s degrees, and Honours degrees

Graduations Programme: Faculties of Economic and Management Sciences and Natural and Agricultural Sciences

11 Dec 2019
09:00: Faculty of Health Sciences
All certificates, diplomas, Bachelor’s degrees, and Honours degrees


14:30: All Faculties 
Master's and doctoral qualifications
Graduations Programme: Master's and Doctoral Candidates in All Faculties

Family and friends who are unable to attend your graduation ceremony can still watch you graduate through our livestream link at which becomes active at 08:45 and 14:15 on the day of the ceremony.


News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept