Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 November 2019 | Story Valentino Ndaba | Photo Charl Devenish
SK Luwaca at UFS Safety Summit for off-campus students
Sikhululekile Luwaca, leader of the UFS Safety Champions, addresses a delegation at the Higher Education Safety Summit from 18-19 October 2019 at the Bloemfontein Campus.

A meeting of minds over student safety recently took place at Kovsies. The Higher Education Safety Summit saw a cohort of 165 students from the University of the Free State (UFS), Central University of Technology and Sol Plaatje University, collaborating with the heads of Protection Services from the respective institutions to devise a safety blueprint specifically focusing on the off-campus environment.

“The rental tribunal came on board to assist with rental disputes between students and landlords, in addition to accreditation issues being discussed,” Sikhululekile Luwaca, former SRC President of the Bloemfontein Campus and leader of the UFS Safety Champions that form part of the Unit for Institutional Change and Social Justice.

Luwaca further said that the Mangaung Metropolitan Municipality also committed to assist the universities in addressing crime and enforcing by-laws. “A strategic safety plan was developed around spatialisation and zoning of student communes, developing a system that will assist universities to establish where students stay by using technology such as geographic information system (GIS),” he added.

What were the objectives of the summit?
Being the first of many to come, the summit set out clear objectives which all stakeholders have committed to work tirelessly to achieve, both in the short and long term.

The goals of the summit were threefold. Firstly, the intention was to build capacity between students and staff of all institutions involved to implement programmes by transferring the skills and knowledge between one another.

Secondly, the idea was to gather and consolidate input from the various higher-learning institutions and by so doing diversify the solutions. Thirdly, the purpose of the summit was to create an official platform where partners may consult on interventions that will ripple from the local, to the provincial and further to national level.

Andiswa Msomi, Spatialisation Group Leader and the Safety Champions’ administrator said she appreciated the shift in perspective that the summit brought. “The summit brought to my attention that sometimes we focus so deeply on one aspect of a problem that we end up not seeing alternative solutions. Due to active participants, new solutions came up, new ideas were brought forth and more importantly, we were able to get other institutions on board,” she said.

What are some of the tangible outcomes?
Going forward, an internal report which focuses on crime prevention measures will be presented to all UFS stakeholders. An external report, which will be submitted by the Safety Champions to the government in January 2020, is expected to be integrated into the Provincial Crime Prevention Strategy.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept