Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 November 2019 | Story Valentino Ndaba | Photo Charl Devenish
SK Luwaca at UFS Safety Summit for off-campus students
Sikhululekile Luwaca, leader of the UFS Safety Champions, addresses a delegation at the Higher Education Safety Summit from 18-19 October 2019 at the Bloemfontein Campus.

A meeting of minds over student safety recently took place at Kovsies. The Higher Education Safety Summit saw a cohort of 165 students from the University of the Free State (UFS), Central University of Technology and Sol Plaatje University, collaborating with the heads of Protection Services from the respective institutions to devise a safety blueprint specifically focusing on the off-campus environment.

“The rental tribunal came on board to assist with rental disputes between students and landlords, in addition to accreditation issues being discussed,” Sikhululekile Luwaca, former SRC President of the Bloemfontein Campus and leader of the UFS Safety Champions that form part of the Unit for Institutional Change and Social Justice.

Luwaca further said that the Mangaung Metropolitan Municipality also committed to assist the universities in addressing crime and enforcing by-laws. “A strategic safety plan was developed around spatialisation and zoning of student communes, developing a system that will assist universities to establish where students stay by using technology such as geographic information system (GIS),” he added.

What were the objectives of the summit?
Being the first of many to come, the summit set out clear objectives which all stakeholders have committed to work tirelessly to achieve, both in the short and long term.

The goals of the summit were threefold. Firstly, the intention was to build capacity between students and staff of all institutions involved to implement programmes by transferring the skills and knowledge between one another.

Secondly, the idea was to gather and consolidate input from the various higher-learning institutions and by so doing diversify the solutions. Thirdly, the purpose of the summit was to create an official platform where partners may consult on interventions that will ripple from the local, to the provincial and further to national level.

Andiswa Msomi, Spatialisation Group Leader and the Safety Champions’ administrator said she appreciated the shift in perspective that the summit brought. “The summit brought to my attention that sometimes we focus so deeply on one aspect of a problem that we end up not seeing alternative solutions. Due to active participants, new solutions came up, new ideas were brought forth and more importantly, we were able to get other institutions on board,” she said.

What are some of the tangible outcomes?
Going forward, an internal report which focuses on crime prevention measures will be presented to all UFS stakeholders. An external report, which will be submitted by the Safety Champions to the government in January 2020, is expected to be integrated into the Provincial Crime Prevention Strategy.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept