Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 November 2019 | Story Valentino Ndaba | Photo Charl Devenish
SK Luwaca at UFS Safety Summit for off-campus students
Sikhululekile Luwaca, leader of the UFS Safety Champions, addresses a delegation at the Higher Education Safety Summit from 18-19 October 2019 at the Bloemfontein Campus.

A meeting of minds over student safety recently took place at Kovsies. The Higher Education Safety Summit saw a cohort of 165 students from the University of the Free State (UFS), Central University of Technology and Sol Plaatje University, collaborating with the heads of Protection Services from the respective institutions to devise a safety blueprint specifically focusing on the off-campus environment.

“The rental tribunal came on board to assist with rental disputes between students and landlords, in addition to accreditation issues being discussed,” Sikhululekile Luwaca, former SRC President of the Bloemfontein Campus and leader of the UFS Safety Champions that form part of the Unit for Institutional Change and Social Justice.

Luwaca further said that the Mangaung Metropolitan Municipality also committed to assist the universities in addressing crime and enforcing by-laws. “A strategic safety plan was developed around spatialisation and zoning of student communes, developing a system that will assist universities to establish where students stay by using technology such as geographic information system (GIS),” he added.

What were the objectives of the summit?
Being the first of many to come, the summit set out clear objectives which all stakeholders have committed to work tirelessly to achieve, both in the short and long term.

The goals of the summit were threefold. Firstly, the intention was to build capacity between students and staff of all institutions involved to implement programmes by transferring the skills and knowledge between one another.

Secondly, the idea was to gather and consolidate input from the various higher-learning institutions and by so doing diversify the solutions. Thirdly, the purpose of the summit was to create an official platform where partners may consult on interventions that will ripple from the local, to the provincial and further to national level.

Andiswa Msomi, Spatialisation Group Leader and the Safety Champions’ administrator said she appreciated the shift in perspective that the summit brought. “The summit brought to my attention that sometimes we focus so deeply on one aspect of a problem that we end up not seeing alternative solutions. Due to active participants, new solutions came up, new ideas were brought forth and more importantly, we were able to get other institutions on board,” she said.

What are some of the tangible outcomes?
Going forward, an internal report which focuses on crime prevention measures will be presented to all UFS stakeholders. An external report, which will be submitted by the Safety Champions to the government in January 2020, is expected to be integrated into the Provincial Crime Prevention Strategy.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept