Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 November 2019 | Story Leonie Bolleurs | Photo Supplied
Bennie
Bennie Botha brings another element of teaching to the classroom for future healthcare professionals. Here, he facilitates a session with students from the School of Nursing.

These days we are surrounded by technology. Interactive whiteboards, 3-D printers, smartphones, laptops, e-books, and virtual reality (VR).

VR was previously associated with the gaming industry, but today it has many uses, including the healthcare industry and more specifically, the field of nursing. 

A staff member in the School of Nursing at the University of the Free State (UFS), Bennie Botha, explains that he always had a fascination with VR. With VR being more affordable to the general user and with him working in the School of Nursing, he wanted to make a difference by providing a more financially sustainable way for students to integrate theory and practical work. 

It was then that Botha, in collaboration with staff from the Department of Computer Science and Informatics and the School of Nursing, developed a virtual environment to train Nursing students as part of his master’s thesis. The title of his dissertation is: Measuring the usability and user experience of virtual reality as a teaching and learning method for nursing students. His supervisor, Dr Lizette de Wet of the Department of Computer Science and Informatics, said the cooperation between two disciplines is important. “This research can make a big contribution towards teaching and learning,” she said. 
 
Adding to existing technology-rich environment

This simulation in a computer-generated environment adds another element to teaching. Instead of only listening to a lecturer, students are immersed in a relevant teaching scenario and are able to interact within a 3D medical institution, treating and taking care of 3D patients. 

The UFS School of Nursing has implemented this first for South Africa, using VR as an instrument to train nursing students. Currently, third-year students and postgraduate Paediatrics students are exposed to this way of training.

This new invention for the School of Nursing adds to the already existing technology-rich environment of the Clinical Simulation Unit within the school; a facility where healthcare students are exposed to training in a safe environment without harming the patient, using high-fidelity patient manikins.

Cost-effective simulation platform

According to Botha, VR provides a cost-effective simulation platform that can be used to augment high-fidelity simulations. “It is also a low-cost alternative for institutions that do not have the capital to implement high-fidelity simulations. By implementing new innovative teaching methods, we aim to provide quality healthcare professionals who can showcase the educational excellence of the School of Nursing at the UFS,” says Botha. 

Rector content

Rector and Vice-Chancellor, Prof Francis Petersen, visited the School of Nursing and engaged in the simulator-based game.
(Photo: Supplied)


He explains the process: “Virtual reality provides students with an opportunity to learn by engaging in a simulator-based game. The virtual environment requires the students to perform a respiratory foreign-body object simulation scenario. Before each virtual simulation session, students are briefed and given the relevant outcomes of the scenario. Students also receive a quick tutorial on the use of the controllers and the head-mounted display.”

“Once a session is complete, a debriefing session is held where students can reflect on the outcome of the simulation. They can view a recording of their own actions for self-reflection afterwards.”

Botha believes the VR environment he created for Nursing students contributes to the Fourth Industrial Revolution, giving the UFS a competitive edge in new developments and the use of innovative teaching and learning technology. 




News Archive

UFS Digital Doorway project will change lives in Heidedal
2011-02-16

 
Learners of the Heidedal community looking at the new computer system.
Photo: Johan Roux

The combined effort of ICTISE (ICT Innovation in School Education), Reach and the Heidedal community saw a four-station Digital Doorway (computer system) being placed on the premises of Reach at the end of 2010. ICTISE is a programme of the University of the Free State (UFS) and operates from the university’s South Campus. This computer system will allow all Heidedal schools and community members to have free access to computers.

Prof. Jonathan Jansen, Vice-Chancellor and Rector of the UFS, opened the Digital Doorway by cutting a ceremonial ribbon with the assistance of one of the community’s learners.

The Digital Doorway concept originates from a joint initiative between the Department of Science and Technology and the Meraka Institute of the Council for Scientific and Industrial Research. The Digital Doorway consists of four screens and allows access to select content, including open-source application software. This includes audio books, subject textbooks, encyclopaedia, educational games such as “touch maths” and quizzes as well as useful information for school subjects and a newspaper especially for children.

The Heidedal Digital Doorway is the first of its kind in the Motheo District. Typically, one or two kids will be working on each of the computers, while up to five other learners will be giving instructions, allowing the whole group to learn. The Digital Doorway is a smart way of bridging the digital divide, bringing science and technology to our community and opening the doors of learning. ICTISE will support the Heidedal schools to make full use of this new facility by training teachers and community members.

“The UFS hopes that this project will change the lives of the Heidedal community by providing the youth with an opportunity to be in line with the changing world of technology,” said Ms Sarietjie Musgrave, Head: ICTISE.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept