Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 November 2019 | Story Leonie Bolleurs | Photo Supplied
Bennie
Bennie Botha brings another element of teaching to the classroom for future healthcare professionals. Here, he facilitates a session with students from the School of Nursing.

These days we are surrounded by technology. Interactive whiteboards, 3-D printers, smartphones, laptops, e-books, and virtual reality (VR).

VR was previously associated with the gaming industry, but today it has many uses, including the healthcare industry and more specifically, the field of nursing. 

A staff member in the School of Nursing at the University of the Free State (UFS), Bennie Botha, explains that he always had a fascination with VR. With VR being more affordable to the general user and with him working in the School of Nursing, he wanted to make a difference by providing a more financially sustainable way for students to integrate theory and practical work. 

It was then that Botha, in collaboration with staff from the Department of Computer Science and Informatics and the School of Nursing, developed a virtual environment to train Nursing students as part of his master’s thesis. The title of his dissertation is: Measuring the usability and user experience of virtual reality as a teaching and learning method for nursing students. His supervisor, Dr Lizette de Wet of the Department of Computer Science and Informatics, said the cooperation between two disciplines is important. “This research can make a big contribution towards teaching and learning,” she said. 
 
Adding to existing technology-rich environment

This simulation in a computer-generated environment adds another element to teaching. Instead of only listening to a lecturer, students are immersed in a relevant teaching scenario and are able to interact within a 3D medical institution, treating and taking care of 3D patients. 

The UFS School of Nursing has implemented this first for South Africa, using VR as an instrument to train nursing students. Currently, third-year students and postgraduate Paediatrics students are exposed to this way of training.

This new invention for the School of Nursing adds to the already existing technology-rich environment of the Clinical Simulation Unit within the school; a facility where healthcare students are exposed to training in a safe environment without harming the patient, using high-fidelity patient manikins.

Cost-effective simulation platform

According to Botha, VR provides a cost-effective simulation platform that can be used to augment high-fidelity simulations. “It is also a low-cost alternative for institutions that do not have the capital to implement high-fidelity simulations. By implementing new innovative teaching methods, we aim to provide quality healthcare professionals who can showcase the educational excellence of the School of Nursing at the UFS,” says Botha. 

Rector content

Rector and Vice-Chancellor, Prof Francis Petersen, visited the School of Nursing and engaged in the simulator-based game.
(Photo: Supplied)


He explains the process: “Virtual reality provides students with an opportunity to learn by engaging in a simulator-based game. The virtual environment requires the students to perform a respiratory foreign-body object simulation scenario. Before each virtual simulation session, students are briefed and given the relevant outcomes of the scenario. Students also receive a quick tutorial on the use of the controllers and the head-mounted display.”

“Once a session is complete, a debriefing session is held where students can reflect on the outcome of the simulation. They can view a recording of their own actions for self-reflection afterwards.”

Botha believes the VR environment he created for Nursing students contributes to the Fourth Industrial Revolution, giving the UFS a competitive edge in new developments and the use of innovative teaching and learning technology. 




News Archive

Dr Abdon Atangana cements his research globally by solving fractional calculus problem
2014-12-03

 

Dr Abdon Atangana

To publish 29 papers in respected international journals – and all of that in one year – is no mean feat. Postdoctoral researcher Abdon Atangana at the Institute for Groundwater Studies at the University of the Free State (UFS) reached this mark by October 2014, shortly before his 29th birthday.

His latest paper, ‘Modelling the Advancement of the Impurities and the Melted Oxygen concentration within the Scope of Fractional Calculus’, has been accepted for publication by the International Journal of Non-Linear Mechanics.

In previously-published research he solved a problem in the field of fractional calculus by introducing a fractional derivative called ‘Beta-derivative’ and its anti-derivative called ‘Atangana-Beta integral’, thereby cementing his research in this field.

Dr Atangana, originally from Cameroon, received his PhD in Geohydrology at the UFS in 2013. His research interests include:
• the theory of fractional calculus;
• modelling real world problems with fractional order derivatives;
• applications of fractional calculus;
• analytical methods for partial differential equations;
• analytical methods for ordinary differential equations;
• numerical methods for partial and ordinary differential equations; and
• iterative methods and uncertainties modelling.

Dr Atangana says that, “Applied mathematics can be regarded as the bridge between theory and practice. The use of mathematical tools for solving real world problems is as old as creation itself. As written in the book Genesis ‘And God saw the light, that it was good; and divided the light from the darkness’, the word division appears here as the well-known method of separation of variables, this method is usually employed to solve a class of linear partial differential equations”.

“A mathematical model is a depiction of a system using mathematical concepts and language. The procedure of developing a mathematical model is termed mathematical modelling. Mathematical models are used not only in natural sciences, but also in social sciences such as economics, psychology, sociology and political sciences. These models help to explain systems and to study the effects of different components, and to make predictions about behaviours.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept