Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 November 2019 | Story Leonie Bolleurs | Photo Supplied
Bennie
Bennie Botha brings another element of teaching to the classroom for future healthcare professionals. Here, he facilitates a session with students from the School of Nursing.

These days we are surrounded by technology. Interactive whiteboards, 3-D printers, smartphones, laptops, e-books, and virtual reality (VR).

VR was previously associated with the gaming industry, but today it has many uses, including the healthcare industry and more specifically, the field of nursing. 

A staff member in the School of Nursing at the University of the Free State (UFS), Bennie Botha, explains that he always had a fascination with VR. With VR being more affordable to the general user and with him working in the School of Nursing, he wanted to make a difference by providing a more financially sustainable way for students to integrate theory and practical work. 

It was then that Botha, in collaboration with staff from the Department of Computer Science and Informatics and the School of Nursing, developed a virtual environment to train Nursing students as part of his master’s thesis. The title of his dissertation is: Measuring the usability and user experience of virtual reality as a teaching and learning method for nursing students. His supervisor, Dr Lizette de Wet of the Department of Computer Science and Informatics, said the cooperation between two disciplines is important. “This research can make a big contribution towards teaching and learning,” she said. 
 
Adding to existing technology-rich environment

This simulation in a computer-generated environment adds another element to teaching. Instead of only listening to a lecturer, students are immersed in a relevant teaching scenario and are able to interact within a 3D medical institution, treating and taking care of 3D patients. 

The UFS School of Nursing has implemented this first for South Africa, using VR as an instrument to train nursing students. Currently, third-year students and postgraduate Paediatrics students are exposed to this way of training.

This new invention for the School of Nursing adds to the already existing technology-rich environment of the Clinical Simulation Unit within the school; a facility where healthcare students are exposed to training in a safe environment without harming the patient, using high-fidelity patient manikins.

Cost-effective simulation platform

According to Botha, VR provides a cost-effective simulation platform that can be used to augment high-fidelity simulations. “It is also a low-cost alternative for institutions that do not have the capital to implement high-fidelity simulations. By implementing new innovative teaching methods, we aim to provide quality healthcare professionals who can showcase the educational excellence of the School of Nursing at the UFS,” says Botha. 

Rector content

Rector and Vice-Chancellor, Prof Francis Petersen, visited the School of Nursing and engaged in the simulator-based game.
(Photo: Supplied)


He explains the process: “Virtual reality provides students with an opportunity to learn by engaging in a simulator-based game. The virtual environment requires the students to perform a respiratory foreign-body object simulation scenario. Before each virtual simulation session, students are briefed and given the relevant outcomes of the scenario. Students also receive a quick tutorial on the use of the controllers and the head-mounted display.”

“Once a session is complete, a debriefing session is held where students can reflect on the outcome of the simulation. They can view a recording of their own actions for self-reflection afterwards.”

Botha believes the VR environment he created for Nursing students contributes to the Fourth Industrial Revolution, giving the UFS a competitive edge in new developments and the use of innovative teaching and learning technology. 




News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept