Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 November 2019 | Story Legopheng Maphile | Photo Supplied
Open Access
Staff from the Library and Information Services of the UFS and the CUT

The Library and Information Services of the University of the Free State (UFS) and the Central University of Technology,Free State (CUT) jointly hosted an Open Science Colloquium on 19 November 2019. The colloquium was in response to the national and international developments in what is referred to as ‘the Open Access 2020 (OA2020) movement’. This movement calls on all parties involved in scholarly communication to take action to make their scholarly outputs open and freely available to all citizens of the world. It is a move against the current subscription-based model of publication, which has proved to be costly and unsustainable, and which limits access to knowledge to a few, making it unacceptable.

Welcoming more than 200 delegates to the UFS, Ms Betsy Eister, Director: Library and Information Services, referred to OA2020 as a disruption in the publishing arena.

Endorsing the Berlin Declaration on Open Access to Knowledge in the Sciences and Humanities

The colloquium comes as an endorsement of the Berlin Declaration on Open Access to Knowledge in the Sciences and Humanities that the two universities signed eight years ago. As signatories, the UFS and CUT have committed to the wide and free dissemination of its scholarship by means of open access platforms. This declaration was confirmed by the Rector and Vice-Chancellor, Prof Francis Petersen.  

“When the UFS signed the Berlin Declaration on Open Access to Knowledge in the Sciences and Humanities in 2011, this university committed itself to the wide and free dissemination of its scholarship by means of open access platforms. At that point, we have already made that commitment to open access platforms.”

Open access vs subscription

Prof Petersen said challenging the current status quo will bring equity into the system, which  will “ensure that our younger cohort of researchers and scholars have the ability to freely conduct research, to freely access material, so that we can produce high-quality researchers and scholars for our system”. 

Also present was Prof Ahmed Bawa, Chief Executive Officer of Universities South Africa, who echoed Prof Petersen’s message by making a case for management, researchers, libraries and research funders to work together to make OA2020 a reality. “These discussions are very important because it provides us with an opportunity to build international consensus on these things, which is critical in moving forward.”

Prof Ahmed Bawa

Prof Ahmed Bawa, Chief Executive Officer of Universities South Africa addressed delegates on the importance of open access. 

Mr Glenn Truran, Director of the South African Library and Information Consortium (SANLiC), and Ms Eister addressed the national and local roadmaps, respectively. SANLiC, a consortium that negotiates deals for electronic resource subscriptions on behalf of all 26 public universities and eight research councils, has already started transformative agreement negotiations with international publishing company Taylor and Francis. 

The colloquium ended with a declaration signed by members present, hoping that it would be signed by all concerned as a commitment to taking action towards open access.  The two universities will ultimately sign the OA2020 Expression of Interest.

• The UFS and CUT Libraries are thankful to Mr Gareth O’Neill and UFS colleagues (Mr Charlie Molepo and Mrs Cornelle Scheltema-Van Wyk), who shared information with the attendees on transformation agreements (also referred to as Plan S) and AmeliCA, respectively. Plan S deals with transformation agreements to be signed with publishers, which are about negotiations with publishers to change from subscription-based to open-access journal publishing models. Mr Molepo and Mrs Scheltema-Van Wyk showcased the open access model that the UFS Library has already implemented, which is what AmeliCA is all about. This involves the publication of nine accredited UFS journals on the Open Journals System platform, which enhance its discoverability and accessibility. It was also a pleasure to listen to Prof Abdon Atangana from the UFS Institute for Groundwater Studies – a classic example of an activist and beneficiary of open access publishing – who was recently named as one of the top-10 cited researchers in the Web of Science, thanks to open access publication.

Betsy Eister
Betsy Eister, Director: Library and Information Services at the UFS. 


News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept