Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 October 2019 | Story Valentino Ndaba | Photo Rulanzen Martin
Dr Thuli Mphambukeli and Victor Okorie
Water is a fundamental human right, says Dr Thulisile Mphambukeli, (left) Senior Lecturer at the Department of Urban and Regional Planning. On the right is Dr Victor Okorie.

Research shows that “access to water and food remains critical to the survival and stability of any nation”. This is according to a team of academics that has been hard at work exploring ways in which to secure water and food in Brazil, Russia, India, China and South Africa (BRICS nations).

These scholars from the University of the Free State (UFS) and North-West University recently published a paper titled: Exploring the Political Economy of Water and Food Security Nexus in BRICS. Dr Thulisile Mphambukeli, Dr Victor Okorie, and Prof Samuel Amusan are members of the Food Security Research Cluster of the South African BRICS Think Tank that has been fervently tackling the water and food in(security) challenge.

Water as a key to social justice 

The team argues that unequal access and distribution of water has in the past led to violent conflict. The paper cites Qwaqwa as one of the many areas affected by water-service protests in the recent past. “Water and food crises are worsening thanks to the intensification of climate change, rapid urbanisation, nutrition transition and population growth. Solutions to these crises partly lie in cooperation and collaboration among nation states, regional economic commissions, and global power brokers.”

What are some of the local solutions? According to the scholars: “For agronomic and husbandry practices, there is a pressing need for research activities on innovative ways of supplying water to crops and animals such that water loss through evaporation and run-off is significantly reduced. 

“Similarly, research activities on redesigning toilets, especially the urinary section – where more than nine litres of water are used to flush less than one cubic centimetre of urine – are timely in the context of managing the water and food security nexus crises.”

Improving livelihoods

In an effort to achieve food security, BRICS aims to stimulate domestic capacity for production. Food and nutrition security cannot be achieved without water security, and vice versa. 

It is evident that the water and food insecurity issues are complex. However, concerted efforts are being made by various sectors to solve these challenges and improve the livelihoods of urban and rural citizens within BRICS nations.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept