Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

Game farming a lens to analyse challenges facing democratic SA – Dr Kamuti
2017-05-30

 Description: Dr Kamuti Tags: Dr Kamuti

Dr Tariro Kamuti, Postdoctoral Fellow at the Centre
for Africa Studies at the University of the Free State.
Photo: Rulanzen Martin

One of the challenges facing South Africa’s developing game farming policy is the fractured state in the governance of the private game farming sector, says Dr Tariro Kamuti.

Dr Kamuti, a Postdoctoral Research Fellow at the Centre for Africa Studies (CAS) at the University of the Free State (UFS), was presenting a seminar on Wednesday 17 May 2017 under the topic, Private Wildlife Governance in a Context of Radical Uncertainty: Challenges of South Africa’s Developing Game Farming Policy, which takes material from his PhD. He received his PhD from both the Vrije University in Amsterdam and the UFS in 2016.

His presentation explored how the private game industry positions itself in accordance with existing agricultural and environmental regulations. It also investigated the state’s response to the challenge of competing needs over land and wildlife resources which is posed by the gaming sector. “The transformation of the institutional processes mediating governance of the private game farming sector has been a long and enduring arrangement emerging organically over time,” Dr Kamuti said.

Game farming links wildlife and agricultural sectors
“I decided on this topic to highlight that game farming links the wildlife sector (associated with conservation and tourism) and the agricultural sector. Both make use of land whose resources need to be sustainably utilised to meet a broad spectrum of needs for the diverse South African population.

“The continuous skewed ownership of land post-1994 justifies questioning of the role of the state in confronting challenges of social justice and transformation within the economy.”

“Game farming can thus be viewed as a lens through which to study the broad challenges facing a democratic South Africa, and to interrogate the regulatory and policy framework in the agricultural and wildlife sectors at their interface,” Dr Kamuti said.

Challenges facing game farming policies

The state alone does not apply itself to the regulation of private gaming as a sector. “There is no clear direction on the position of private game farming at the interface of environmental and agricultural regulations, hence game farmers take advantage of loopholes in these institutional arrangements to forge ahead,” Dr Kamuti said.

He further went on to say that the state lacked a coherent plan for the South African countryside, “as shown by the outstanding land restitution and labour tenant claims on privately owned land earmarked for wildlife production”.

The South African government was confronted with a context in which the status quo of the prosperity of the middle classes under neoliberal policies was pitted against the urgent need to improve the material well-being of the majority poor.  Unless such issues were addressed, this necessarily undermined democracy as a participatory social force, Dr Kamuti said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept