Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

Academics should strive to work with students towards publishing, says NRF-rated researcher
2017-07-17

Description: Dr Rodwell Makombe Tags: National Research Foundation University of the Free State Qwaqwa Campus Department of English  

Dr Rodwell Makombe, Y-gegradeerde navorser.
Foto: Thabo Kessah


“The National Research Foundation (NRF) is a prestigious research institution and to be recognised by such an institution means that my work is worthwhile. This alone motivates me to do more research.” This is how Dr Rodwell Makombe reflected on his recent recognition as an NRF-rated researcher – one of the few on the Qwaqwa Campus. He is a Senior Lecturer in the Department of English at the University of the Free State’s Qwaqwa Campus.

“This recognition is indeed an important milestone in my research career. It means that my efforts as a researcher are recognised and appreciated. The financial research incentive will enable me to engage in more research, attend conferences, and so forth,” he said.

Comparing research in the Humanities and Sciences

Dr Makombe’s research area is broadly postcolonial African literature, but he is particularly interested in postcolonial literatures and resistance cultures. He is currently working on a book project entitled Visual Cultures of the Afromontane.

When asked what he thought about Natural Sciences being in the lead as far as research is concerned, he said that this is mainly caused by funding opportunities.

“It means that my efforts as a
researcher are recognised and
appreciated.”

“It is easier to access funding for research in the Natural Sciences than for the Humanities. Researchers in the Humanities usually do research without any form of funding. However, there are also differences in the way research is done in the Sciences than in the Humanities. Science researchers tend to work together on different projects, which make it easier for them to have their names on publications, no matter how small their contribution. This is also connected to the issue of funding,” he added. 

He continued: “Since research in the Humanities is largely unfunded, it is difficult for researchers to establish research groups. Another issue is that most academics in the Humanities do not necessarily teach modules within their research interests. Therefore, they tend to be overloaded with work as they have to do research in one area and teach in another area.”

NRF-rating and funding

For Dr Makombe, the solution to this challenge lies in academics in the Humanities working towards publishing with their students. “This way,” he said, “both the students and the academics will get publications that will help them to get NRF-rating and other forms of research funding. Modules in the Humanities need to be aligned to academics’ research interests to avoid mismatches between teaching and research.” 

He previously worked at the University of Fort Hare and the Durban University of Technology and has published several articles in both local and international journals.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept