Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

Quantity Surveying and Construction Management department aspires to excellence
2017-08-14

Description: Prof Kahilu Kajimo-Shakantu Tags: Prof Kahilu Kajimo-Shakantu 

From the left: Prof Danie Vermeulen, Dean of the
Faculty of Natural and Agricultural Sciences;
Prof Kahilu Kajimo-Shakantu, Head of the Department
of Quantity Surveying and Construction Management;
Prof Francis Petersen, Rector and Vice-Chancellor
at the UFS; and Dr Franco Geminiani, chairing the
panel from the South African Council for the Project
and Construction Management Professions.
Photo: Leonie Bolleurs

Achieving programme accreditation from the respective professional bodies is the ultimate goal for the Department of Quantity Surveying and Construction Management at the University of the Free State (UFS). This is according to Prof Kahilu Kajimo-Shakantu, the head of this department. This hallmark of quality reflects the university’s aspiration towards excellence.

Construction Management programmes reviewed
The university recently received a visit by a panel, representing the South African Council for the Project and Construction Management Professions (SACPCMP) to re-accredit programmes offered by the Department of Quantity Surveying and Construction Management. During the accreditation visit, the panel evaluated the programmes to determine whether they met the minimum requirements according to a set of pre-determined criteria.

When reviewing the programmes: BSc and BSc Hons Construction Management respectively, as well as the Project Management stream of the Masters programme in Land and Property Development Management (MLPM), the panel looked at programme design and outcomes including curriculum, study material and exam papers, institutional support, student recruitment, admission, development, retention and throughput, staffing recruitment and development, teaching and learning strategies, quality assurance, facilities, infrastructure and resources, professional development, industry and practical exposure and postgraduate policies, procedures and regulations, including research activities.

If the minimum requirements are achieved, the Department of Quantity Surveying and Construction Management at the UFS will receive accreditation for its programmes from 1 April 2017 to 31 March 2022.

It will also mean that we are certified
as producing quality employable
graduates who are well prepared to
enter the industry and make a difference.

Currently, the department has full accreditation by the SACPCMP (until March 2017) and the SACQSP (until December 2017).

Later this month, a panel from the South African Council for Property Valuation Profession (SACPVP) will review the accreditation of the Valuation stream of the MLPM programme. The South African Council for Quantity Surveying Profession responsible for accrediting the Quantity Surveying programmes will visit the university in 2018.

Certified as producing quality students

Prof Kajimo-Shakantu said: “If we maintain our accreditation, it will reflect that the UFS is among the best, with programmes which are recognised by professional bodies that set competence standards for professional registration of students. It will also mean that we are certified as producing quality employable graduates who are well prepared to enter the industry and make a difference. The programmes contribute to the development of the much-needed critical skills in the built environment.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept