Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

Her mission: Looking for viruses
2017-10-03

Description: Burt readmore Tags: Prof Felicity Burt, Felicity Burt, inaugural lecture, medical virology, UFS Faculty of Health Sciences, arboviruses 

Prof Felicity Burt delivering her inaugural lecture,
Catching a Virus
Photo: Stephen Collett

“Preparing and presenting an inaugural lecture is an opportunity to look back at one’s career and to enjoy previous highlights and achievements; to share these, not only with colleagues, but also with family and friends.”

This is according to Prof Felicity Burt, who recently presented her inaugural lecture, Catching a Virus. Prof Burt is a professor in medical virology in the Faculty of Health Sciences at the University of the Free State (UFS). It may sound ominous, but it is a story about identifying viruses, and finding and stopping them in their tracks in nature.

Research focus on arbo- and zoonotic viruses 
“My research focuses on arboviruses and zoonotic viruses,” said Prof Burt. “Arboviruses are viruses that are transmitted by insect vectors, such as mosquitoes, ticks, midges or sandflies, whereas zoonotic viruses are naturally transmitted from animals to humans. However, there is a considerable overlap between these two groups.” The research looks at host responses, virus discovery and surveillance in order to identify which of the viruses in circulation have the potential to cause human diseases.

“Emerging and re-emerging viruses have significant implications for public health,” said Prof Burt at the start of her lecture. She also stated that there have been disease outbreaks of unprecedented magnitude, which have spread and established in distinct geographic regions. “Many of these emerging viruses are transmitted by vectors or are spread to humans from animals. These viruses can cause significant diseases in humans,” said Prof Burt. 

There are many reasons why these viruses re-emerge, such as global warming, human invasion in forested areas, changes in agricultural practices, international travel, as well as the illegal movement of animals. Prof Burt used the Zika virus as an example of a recent emerging virus. 

More than 20 years’ experience 

With more than 20 years’ experience and a PhD in medical virology from the University of the Witwatersrand, Prof Burt is a renowned specialist. She has worked in the Special Pathogens Unit at the National Institute for Communicable Diseases, and was a member of various teams responding to outbreaks of Ebola and Rift Valley fever in Africa and Saudi Arabia, respectively. She is co-author of more than 51 articles in international scientific journals, as well as six chapters on arboviruses. In 2016, she was awarded a SARChl research chair by the South African Research Chair Initiative for her research on vector-borne and zoonotic diseases.

Click here to read the full lecture.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept