Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

UFS academics serve high in ranks of Cereal Science institutions
2017-10-10

Description: Cereal Science Tags: Cereal Science

Dr Angie van Biljon, Senior Lecturer in the Department of Plant Sciences at the University of the Free State (UFS), was elected as president of Cereal Science and Technology South Africa (CST-SA) at their bi-annual general meeting, in Pretoria.

Prof Maryke Labuschagne, Professor in Plant Breeding at the UFS and official representative of South Africa in the American Association for Cereal Chemists International from 2007, was re-elected as the South African representative to the American Association for Cereal Chemists. She attends the annual conference in the US as well as the International Association for Cereal Science and Technology (the European counterpart of AACC) regularly. “I use these conferences to report on the research done by the research team at the UFS on gluten protein, baking quality and nutritional value of cereals,” she said.

Prof. Labuschagne was also involved in a training course for the baking industry. 

Both Dr Van Biljon and Prof Labuschagne are involved in research on wheat gluten proteins, which is critical to the baking industry. CST-SA is a platform to disseminate this and other research, not only locally but also internationally. The aim of this society is to advance cereal science and technology both in the public sector and in the industry of Southern Africa.

CST-SA creates an opportunity for staff and
students working on cereals to interact
with the industry. This prevents research
from being just academic and creates
an opportunity to bring the research and the
industry together.

Wheat research not just academic
According to Prof Labuschagne CST-SA creates an opportunity for staff and students working on cereals to interact with the industry. This prevents research from being just academic and creates an opportunity to bring the research and the industry together. This has been very useful for students at the university working on cereals, as they have made presentations at the “New Voices” symposium, a forum for postgraduate students to present their research.

“Through CST-SA we have also, through the years, presented our research on an international level at the annual meetings of the American Association for Cereal Chemists and the International Association for Cereal Science and Technology,,” said Prof Labuschagne.

The science of cereals
CST-SA is an association of organisations and individuals, from both the private and public sectors, who are actively involved in the science and technology of cereals. Its aim is to promote the dissemination of knowledge and information on cereal science and technology through meetings, publications, workshops and other means. CST-SA also organises training courses for the industry. In the past years there was a course for the baking industry and one for the milling industry and also the “New Voices” symposium”.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept