Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

Science school of excellence for Grade 11 learners launched
2009-04-21

 
At the launch of the Science School of Excellence were, from the left: Prof. Neil Heideman, Vice-Dean: Faculty of Natural and Agricultural Sciences at the UFS, Mr John Davids, General Manager, Volksblad, Ms Lorraine Botha, Chief Professional Officer, Centre for Education Development at the UFS, and Rev Kiepie Jaftha, Chief Director: Community Service at the UFS.
Photo: Dalene Harris

Science school of excellence for Grade 11 learners launched

The Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) has launched a project to give top Grade 11 learners an idea of what the faculty has to offer by giving them a ‘university-type’ experience.

The Science School of Excellence Project was launched last week during a function where the university’s schools support programmes were introduced to the management and members of staff.

The project is aimed at Grade 11 learners in the Free State who obtained an overall average of 80% in the 2008 Grade 10 final examinations. This includes a minimum score of 80% (Level 7) in Mathematics and a minimum score of 80% (Level 7) in Physical or Life Science during the same examination. It will be presented on the Main Campus in Bloemfontein from 6-9 July 2009. The closing date for applications is 8 May 2009.

“By presenting this project we want to stimulate learners’ interest in the natural and agricultural sciences, give them an idea of what we have to offer, raise their interest to come and study at the UFS and let them know that we cherish them as role models in their schools and as academic leaders of the future,” said Prof. Neil Heideman, Vice-Dean of the Faculty of Natural and Agricultural Sciences at the UFS.

According to Prof. Heideman the Science School of Excellence will take on the form of small lab and field projects which the learners will carry out under the supervision of staff and postgraduate students. An application fee of R50 per learner must be paid by the school and a maximum of 80 learners can be accommodated. The 80 learners will be selected on a first come, first served basis and a registration fee of R200 per learner has to be paid after they have received notice that they have been accepted. Letters in this regard have been sent to principals of secondary schools in the Free State. “We will also include 10 learners from disadvantaged rural schools, who will be fully sponsored,” said Prof. Heideman.

“Fourteen of our departments will be presenting programmes, during which learners will engage in challenging exercises that will be ‘out of school’ experiences involving laboratory experiments and research activities typical of our faculty,” said Prof. Heideman.

Five other schools support programmes of the UFS were also presented during last week’s launch function. They were the Itjhoriseng Project, which is a skills development course in Mathematics and Physical Sciences for teachers in the Further Education phase; the Science for the Future Project that aims to encourage more learners to enter into science-related studies and careers; the Qwaqwa School Support Programme that aims to improve the year-end results of Grade 12 learners and a project by the South African Foundation for Economic and Financial Education (SAFEFE) and the National Council of Economic Education (NCEE),which aims to improve the economic and financial literacy of teachers.

“The university’s role in the development of teachers and learners in various subject fields has increased tremendously over the past couple of years. Learners are our students of the future. As a university we must do as much as we can to equip them and their teachers with the necessary skills to better themselves,” said Rev. Kiepie Jaftha, Chief Director: Community Service at the UFS at the launch of the Science Schools for Excellence Project.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
20 April 2009

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept