Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

UFS on the right track with transformation - Fulbright scholars
2010-08-27

 
Pictured from the left, are: Dr Wilmore-Schaeffer, Rev. Dr Streets and Ms Leah Naidoo (Senior Administrator of the Institute).
Photo: Mangaliso Radebe

“I think the university is not only on the right track but can really become a model for how to negotiate certain difficult processes, such as transformation, within a short period of time. I think it can become a model, not just for other universities, but also for the world.”

This was said by Dr Rozetta Wilmore-Schaeffer, who together with Rev. Dr Frederick J. Streets, recently worked with the International Institute for Race, Reconciliation and Social Justice at the University of the Free State (UFS) as Fulbright specialists. They helped the institute come up with ideas in terms of making the changes that are necessary for the transformation of the university.

“There is a great deal that has already been done despite the sense of urgency and impatience, and I think there is a great deal more to be done,” said Dr Wilmore-Schaeffer.

“I think this sense of urgency comes from those who are involved in the process of looking at the destination, the place that they want to be at, and feeling that they are very far from it.”

During their visit here the two had numerous conversations with both staff members and students.

“I have been most impressed by the students who I think are ready to make changes in many different ways – I am talking about students of all racial groups and gender. The fact that they are referring to transformation as ‘their struggle’ shows that they are prepared to make changes,” said Dr Wilmore-Schaeffer.
She, however, cautioned that there were those who were still against transformation taking place at the university.

“I think there is still some resistance from some quarters on both sides of the fence and I would expect that at this point in time. I think what is really hopeful is that there are so many students who are ready to make the changes, who are making the changes, who are struggling with issues around making the changes; and I think that is really the hope for the university and the hope for the future,” she said.

“The resistance is complex,” added Rev. Dr Streets. “It is around a fear for the future, the loss of identity on the part of both black and white students, and the desire for cultural continuity amongst white students as well as amongst a variety of ethnic black students.

“The resistance is about learning that you are not the only kid on the block anymore and how you then overcome the feeling of realising that you are not the dominant person anymore and that your culture is not the dominant culture anymore.”

They have given a preliminary report of their findings to the Rector and Vice-Chancellor of the UFS, Prof. Jonathan Jansen, which will be followed by a more detailed report later on.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept