Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

Central SRC constitution for UFS approved by Council
2005-07-20

University of the Free State Fact Sheet

1. The Council of the University of the Free State (UFS) on 10 June 2005 unanimously approved the establishment of a Central Student Representative Council (CSRC)  to constitute a legitimate basis for the democratic participation of students of all three of its campuses in the governance of the university.

2. In a major breakthrough and transformation step for student governance, the Central SRC will include representatives of the main campus in Bloemfontein, the Vista Bloemfontein campus and the Qwaqwa campus of the UFS.

3. The need to establish the Central SRC follows the incorporation of the Qwaqwa campus into the UFS in January 2003 and the incorporation of the Vista campus in Bloemfontein into the UFS in January 2004.

4. The constitution of the Central SRC is the outcome of a consensus reached during a lengthy process of negotiation between the SRCs of the three UFS campuses, indirectly involving diverse student formations such as Sasco, ANCYL, YCL, Pasma, SASO, SADESMO, AZASCO, SCO, HEREXVII, KovsieAlliance, ACDP, etc. Independent constitutional and political experts facilitated key parts of the negotiation process.

5. In this process, the UFS management went out of its way to ensure the participation of all student formations, especially Sasco and the ANC Youth League, as well as the duly elected SRC officials of the three campuses.

6. With the establishment of a Central SRC, the UFS has adopted a federal student governance model whereby the CSRC is the highest representative student body on matters of common concern for all students. The three campuses of the UFS will retain SRC structures for each campus with powers and responsibilities for matters affecting the particular campus.

7. The central SRC will have 12 members made up of delegates of the different campus SRCs, including the presidents of these three SRCs. In total, the main campus will have 5 representatives, the Qwaqwa campus will have 4 representatives and the Vista campus will have 3 representatives. This ratio ensures a strong voice for the smaller campuses in the central SRC.

8. This arrangement will be reviewed after a year to make allowance for the phasing out of undergraduate (pipeline) students at the Vista campus, as was agreed in the negotiations preceding the incorporation of that campus into the UFS.

9. From these 12 members a central SRC president will be chosen on a quarterly basis to represent the general student body at Executive Management, Senate and Council.

10. The historic official inauguration of the first Central SRC is scheduled to take place in early August 2005.

11. This event, like the adoption of a broadly negotiated new constitution for the main campus SRC, represents a  breakthrough in that all three campus SRCs delegations and all relevant student organizations have been part of the process and have accepted the outcome of the process.

20 July 2005

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept