Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

New security measures for Rag fundraising
2012-01-25

The University of the Free State will no longer allow first-year students to sell Ritsems or to shake their cans for change at traffic robots in Bloemfontein in an effort to raise funds for Rag Community Service.

This decision follows after an evaluation has been done in 2011 and 2012 concerning the safety risk for students during this type of sales at road crossings.
 
The new security measures have specifically been implemented for this type of sales since last year.
 
The measures included, among others, that students should be obliged to wear brightly coloured safety jackets during sales, continuous supervision of first-year students by senior students to ensure that students keep to the rules of the road, and limiting the sales hours at robots.
 
Through notices in the media, an appeal was made on motorists to keep a lookout for students raising money for Rag Community Service. The measures were implemented and the effects thereof for students’ safety during sales at robots monitored since last year. This follows after a student, Ms Hanje Pistorius, was hit by a reckless driver in 2010 and she subsequently lost her leg as a result of the accident. 
 
Although, from all appearances, the new measures are a positive contribution to protect students even more, the UFS decided to abolish the sales and fund-raising actions at traffic robots. As reckless drivers would not necessarily take notice of the extra measures, the risk to students at robots stay unchanged. 
 
"The UFS sets the safety of its students as first priority and considers it in the best interest of students to not expose first-years to the risk during our Rag programme,” says Mr Rudi Buys, Dean: Student Affairs at the UFS.
 
Night fund-raising and the selling of Ritsem in the city’s suburbs will, however, continue. 
 
Although the UFS do not expect the new measures to be detrimental to fund-raising efforts, Rag Community Service currently considers new supporting proposals for the raising of funds for community projects in order to address any possible reduction in funds. 
 
Mr Buys also has an agreement with Ms Pistorius to assist Rag Community Services in the planning of new projects.
 
The Night fund-raising in suburbs will take place on Tuesday 24 January and Thursday 26 January and the UFS calls on residents to assist students and help them in the important task at hand.
 
Three Rag processions will take place on Saturday 28 January 2012. At 10:00 two Rag procession will be leave for Heidedal and Mangaung, where the Kovsie Rag Community Service will hand out food parcels.
 
The main Rag Procession will leave the UFS at 18:00 and will move towards the Old Greys sports ground for the Rag concert with Die Heuwels Fantasties and DJ Black Coffee.

Media Release
25 January 2012
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept