Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

Archbishop Emeritus Desmond Tutu visiting the UFS once again
2012-07-13

Archbishop Emeritus Desmond Tutu
13 July 2012

The University of the Free State (UFS) will once again be honoured by the presence of Archbishop Emeritus Desmond Tutu on Wednesday 18 July 2012.

Dr Tutu will be speaking at our Bloemfontein Campus for the first session of a two-day “In Conversation With …”event that is part of the Global Leadership Summit currently being held on the campus.

This sessions starts at 09:30 at the Centenary Complex. The media is invited to attend this session.

Dr Tutu will be in dialogue with Prof. Mark Solms, Head of the Department of Psychology at the University of Cape Town and owner of the Solms-Delta Wine Estate in Franschhoek.

The theme for this conversation, facilitated by Prof. Pumla Gobodo-Madikizela, will be “Living Reconciliation: Winds of Change in Franschhoek and Transformation at Solms-Delta Wine Estate”. This is based on the transformation introduced by Solms on his farm in the Franschhoek Valley.

Prof. Gobodo-Madikizela is a Senior Research Professor on trauma, forgiveness and reconciliation at the UFS.

As owner of Solms-Delta Wine Estate in Franschhoek, Prof. Solms led an initiative to transform the lives of farm workers on the estate through the Wijn de Caab Trust. This initiative was extended to empower the wider community of farm dwellers when Prof. Solms co-founded the Delta Trust and the Franschhoek Valley Transformation Charter. This organisation aims to break trans-generational cycles of social division and inequality in the valley.

The dialogue with Dr Tutu will highlight the significance of these initiatives as examples of deepening the link between socially responsive scholarship, commitment to social justice and responsible citizenship in contemporary South Africa.

Last year, the UFS awarded Dr Tutu an honorary doctorate in Theology, marking a milestone in the history of the university.

At 12:30, Dr Tutu will visit the Red Square in front of the UFS Main Building, where he will join in the fundraising festivities for the university’s official Nelson Mandela Day event and deliver a short address.

Schools in the vicinity, UFS staff and students and the public are invited to take part in the R5 coin laying ceremony in front of the Main Building.

The money collected at this event will be used to benefit the No Student Hungry (NSH) campaign as well as Bloemfontein Child Welfare.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept