Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

Qwaqwa Campus launches No Student Hungry Programme
2013-05-02

 

Samkelo Duma (white shirt) flanked by some of the guests during the launch of the NSH Programme on the Qwaqwa Campus.
Photo: Thabo Kessah
02 May 2013

The Qwaqwa Campus of the University of the Free State launched the No Student Hungry (NSH) Programme on Friday 26 April 2013. The programme aims to provide needy students with a daily balanced meal to enable them to concentrate in class and ultimately obtain their degrees. The programme – initiated by Vice-Chancellor and Rector Prof Jonathan Jansen in 2011 on the Bloemfontein Campus – already feeds hundreds of students.

Rudi Buys, Dean of Student Affairs who represented the Rectorate, encouraged students in need to focus more on their desire for greatness.

“Through this programme, you will be able you to shift your focus from the hunger pangs and rather focus all your energy on the hunger to make Africa great,” said Buys. “We want you to be different from the rest of your generation that is reluctant to compete for greatness. Many of your peers prefer mediocrity and it is our wish that through this programme, you can start learning to compete with the best,” Buys impelled.

According to the Qwaqwa Campus programme co-coordinator, Selloane Phoofolo, NSH operates on a primary and a secondary level.

“The primary level offers a food bursary to the students whose academic performance is above 65 percent and not receiving any form of financial assistance. For the 2013 academic year, we had 53 students applying and 31 have qualified. They are getting a meal for R25.00 a day at the Dining Hall,” said Phoofolo.

She further explained that, “On the secondary level, we provide monthly food parcels to 19 students who did not qualify for the food bursary. These food parcels are donated by Pick n Pay and Stop Hunger Now SA. For this, beneficiaries must undertake 40 hours of community service during the year. They must also partake in student activities. Their academic progress is monitored by the Office of Social Work.”

One of the beneficiaries, a final-year BA degree student Samkelo Duma, expressed his gratitude towards the UFS for giving him an equal opportunity to those in more fortunate situations to do his best in his studies. “It is difficult to study and concentrate on an empty stomach and I must say that the NSH is very helpful. I do not just get a meal, but I get a healthy meal to keep me going throughout the tough day,” Duma said.

Also present at the launch were the patrons of the programme, Ms Grace Jansen and Dr Carin Buys. They volunteer their time and energy to raise funds for the project.

Students apply for the allowances and are selected on the basis of financial need, academic results, active participation in student life programmes and commitment to give something back to the community.

You can also invest in these students' future by contributing R10.00 each time you sms the word 'Answer' to 38722.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept