Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

Leah Tutu - from a humble heritage to a matriarch of devotion
2013-10-18

 

Leah Tutu
18 October 2013

Photo Gallery
Leah Tutu Symposium: YouTube video

There are treasures in life, but owners are few
Of money and power to buy things brand new
Yet you can be wealthy and feel regal too,
If you will just look for the treasures in you …

The joy and the laughter, the smile that you bring;
The heart unafraid to love and to sing;
The hand always willing to help those in need;
Ones quick to reach out, to labour and feed.

So thank you for sharing these great gifts inside;
The caring, the cheering, the hug when one cried.
Thanks for the energy, encouragement too,
And thank you for sharing the treasures in you. (Author unknown)

With these words, Thandeka Tutu-Gxashe embodied the celebration in honour of her mother, Leah Tutu.

On Thursday 17 October 2013, the Annual Intercontinental Leah Tutu Symposium was launched at the UFS’ Bloemfontein Campus. Dignitaries and students alike flocked to the Centenary Hall where friends and family shared their immense love and respect for Ms Tutu.

Approaching the podium, Eunice Dhadhla (co-founder with Ms Tutu of the Domestic Workers Union) started humming and in an instant the audience had risen to their feet and the words “My mother was a kitchen girl. My father was a garden boy. That’s why I’m a unionist”, reverberated through the hall.

“I am what I am today because of her,” Dhadhla said of Ms Tutu. They have walked a long hard road together to ultimately unite domestic workers across the globe. Stretching her small body to its full length, Dhadhla imparted one of the most valuable lessons she has learned from Ms Tutu, “Stop crawling, stand up and walk for yourself.”

As soon as Dr Sindiwe Magona – acclaimed writer and poet – ascended the stage, her energy rushed across the room with electrifying intensity. Her high regard for Ms Tutu as public icon as well as a mother, wife and friend, was palpable. Belting out line after line of a poem she wrote especially for Ms Tutu, the audience echoed their agreement in a mutual exchange.
No sooner were they seated, than Archbishop Desmond Tutu and Prof Jonathan Jansen had the crowd roaring with laughter. Archbishop Tutu’s familiar chuckle peppered his story of how he came to propose to his wife. It was clear, though, how much he reveres Ms Tutu’s presence in his life. With enormous awe, he revealed her innate power, specifically during difficult times in our country’s past – from weathering death threats against her husband to public humiliation.

But despite adversity and heartache, in front of the Centenary Hall, this matriarch stood up and beamed joy into everyone present.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept