Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

It’s Rag Time!
2014-01-14

 

Zakes Bantwini, Mango Groove and Robbie Wessels 
Photos: Supplied

Kovsie Rag Community Service will start 2014 off with the well-known Rag festivities, with enthusiastic students already starting with float building in January. The theme for Rag CS 2014 is ‘Movies.’

As from 20 January, a cheerful atmosphere will be present at the Kovsie Rag farm, with senior and junior students working hard, while social cohesion is developing between them. Great entertainment will be part of these festivities, with the likes of DJ Euphonik and Adam performing on 31 January.
In the midst of all these activities, the annual ‘Chicken Run’ evening collections will take place on 21, 23 and 28 January, as well as the Ritsim sales in Bloemfontein and surrounding areas on 24-25 January.

The hard work will reach its peak with the judging of the floats on the morning of 1 February, after which the floats will depart at 09:00 for the first procession of the day. This route will end at Twin City Mall at 11:00, where 10 000 meals will be distributed to communities in Heidedal and Mangaung. Learners from Heidedal schools will entertain the public with their talents.

Our very popular family festival will already start at 16:00 with the opening of the gates at Chevrolet Park Cricket Stadium. Young and old will be entertained by well-known and vibrant artists, such as Robbie Wessels, Mango Groove, Zakes Bantwini, as well as a spectacular firework show. Come early to ensure a great spot on the grass.

The float winners will be announced at 17:00, whereafter the main procession of the day will depart from the Tempe robot in Nelson Mandela Drive at 18:00. The public can look forward to this ever popular procession through the streets of Bloemfontein, with decorated floats and students cradling collection tins proceeding to Chevrolet Park. The 2012/2013 UFS Rag queen, Mr Rag and their retinue will greet the public from the main float. Finalists for the 2013/2014 UFS Rag queen and Mr Rag titles, as well as drum majorettes, will also accompany the procession.

Do not miss out on this wonderful family festival – come early, bring your family and picnic blanket/chairs to ensure a great spot on the grass – a variety of refreshments will be on sale.

Tickets available from Computicket and entrance gates.

Tickets: R60 per person
R30 per child under 12

We would also like to make use of this opportunity to remind you of our vibrant 2013/2014 UFS Rag coronation ball, where the UFS Rag queen and Mr Rag CS for 2014 will be crowned on 14 February 2014 in the Callie Human Centre, UFS Campus.

Limited tickets will be available at R500 per couple and can be bought from the Rag Community Service office from 5 February 2014.

Enquiries:

Karen Scheepers +27(0)51 401 2423 ( ScheepersK@ufs.ac.za )
Esmé Wessels +27(0)51 401 3769 ( Wesselse@ufs.ac.za )

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept