Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

The UFS issues a statement regarding the outcome of recent court case
2014-09-15

A significant number of reports appeared in the media the past week regarding this alleged attack, which happened on the Bloemfontein Campus of the UFS on 17 February 2014.

Although the senior leadership of the UFS is always in favour of good and objective journalism, we find it unfortunate that some of the facts are reported in a misleading and/or inaccurate way by some of the local media.

It is important to us that the true facts are stated. Not only for the sake of those involved, but also for our staff, students, alumni and other important stakeholders.

Here are the facts:

1.    The university was not the complainant. The alleged incident was reported to the South African Police Service (SAPS) by the victim, Muzi Gwebu, and the charges were laid by the State.

2.    At no point did the university management in any of its public statements describe this incident as a case of racism; not once. Charges of racism, then and now, must be proven, not assumed to be true simply because someone alleges racism. That is our standard approach, then and now.

3.    Cobus Muller and Charl Blom were suspended by the university, not expelled – pending the results of the court case. Emotions were running high among members of the student body and, on grounds of the evidence available to the university management at the time, as well as concerns for student and campus safety, they were suspended pending the outcome of a court hearing. This is normal procedure. Suspension does not mean you are guilty; it means you have a case to answer, either according to the university's disciplinary procedures or in the courts. For these reasons the university management will not apologise for the suspension.

4.    The university awaited the outcome of the court case before deciding whether disciplinary action should also be taken against Cobus Muller and Charl Blom. In the light of both the South African Human Rights Commission (SAHRC) and the Regional Court rulings, the university management subsequently decided to lift the suspensions of both Muller and Blom from all campuses of the university with immediate effect.

Muzi Gwebu laid serious charges with the SAPS almost immediately after the incident, and the university management believed, on the evidence then available, that the students had a case to answer.
 
5.    As the Director of Public Prosecutions decides on who will be prosecuted and who not, there are no grounds for the university to pay the legal fees of any of the students in this case.
 
Finally:
The University of the Free State will not be fazed by inaccurate and distorted information, rumour and exaggerations. We are still striving to become a truly excellent university, with a focus on the academic, but also the human development of our students.

Issued by: Lacea Loader (Director: Communication and Brand Management)
Tel: +27 (0) 51 401 2584 | +27 (0) 83 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept