Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

Kovsies proud of a gold PRISM Award for safety campaign
2015-05-05

Stefan Lotter, Leonie Bolleurs and Lacea Loader. All three are from the Departement of Communication and Brand Management at the UFS.
Photo: Hannes Pieterse

The University of the Free State, takes pride in the gold PRISM Award (from the Public Relations Institute of Southern Africa) for the B Safe Take Action safety campaign that has been rolled out on the campus since 2013 by the Department of Communication and Brand Management.

The campaign earned the Von H Brand Provocateur gold award in the internal communication category.

“The UFS is the only tertiary institution to receive a gold award. The award is a great honour for the department, considering the cream of South African public relations took part in the competition, and the standard was naturally very high. It was also a feather in the cap for us that the uniqueness of the campaign received national recognition from our peers in this manner, said Ms Lacea Loader, Director: Communication and Brand Management at the UFS.

The university is responsible for about 32 000 students and 4 000 members of staff on its three campuses: the Bloemfontein and South Campuses in Bloemfontein and the Qwaqwa Campus in the Eastern Free State. It is of cardinal importance for the university that its students, staff, and assets are safe.

Apart from safety measures that have been implemented by the UFS Protection Services, the B Safe Take Action campaign has also been rolled out on the three campuses of the UFS. The campaign supports the safety strategy of the university. It is aimed at developing a culture of safety awareness in students and staff alike. The purpose of the campaign is for staff and students to take ownership of their own safety. In addition, it creates awareness of the safety measures that are in place at the UFS.

The campaign has been rolled out on various communication platforms. These include placards, pamphlets, lamp-post advertisements, an advertisement board, emails, and messages on student communication portals such as Blackboard, the UFS web and intranet, social media, information boards in the campus parking areas and on the pedestrian walkways as well as messages on refuse bins around the campus. “The fact that a variety of communication platforms has been deployed, the striking design and character of the messages, and the number of target audiences that have been reached further contributed to the success of the campaign,” said Ms Loader,

The campaign also received a merit award from the International Association for Business Communication (IABC). The award will be presented on 15 June 2015 in San Francisco, USA.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept