Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

Prof Antjie Krog speaks on verbalising revulsion and the collusion of men
2015-06-26

From the left are Prof Lucius Botes, UFS: Dean of the Faculty of the Humanities; Prof Helene Strauss, UFS: Department of English; Prof Pumla Gobodo-Madikizela, UFS: Trauma, Forgiveness and Reconciliation Studies; Prof Antjie Krog, UCT: Department Afrikaans and Dutch; Dr Buhle Zuma, UCT: Department of Psychology. Both Prof Strauss and Dr Zuma are partners in the Mellon Foundation research project.

“This is one of the bitterest moments I have ever endured. I would rather see my daughter carried away as a corpse than see her raped like this.”

This is one of 32 testimonies that were locked away quietly in 1902. These documents, part of the NC Havenga collection, contain the testimonies of Afrikaner women describing their experiences of sexual assault and rape at the hands of British soldiers during the South African War.

This cluster of affidavits formed the foundation of a public lecture that Prof Antjie Krog delivered at the University of the Free State’s (UFS) Bloemfontein Campus on Tuesday 23 June 2015. The lecture, entitled ‘They Couldn’t Achieve their Goal with Me: Narrating Rape during the South African War’, was the third instalment in the Vice-Chancellor’s Lecture Series on Trauma, Memory, and Representations of the Past. The series is hosted by Prof Pumla Gobodo-Madikizela, Senior Research Professor in Trauma, Forgiveness, and Reconciliation Studies at the UFS, as part of a five-year research project funded by the Andrew W. Mellon Foundation.

Verbalising revulsion

The testimonies were taken down during the last two months of the war, and “some of the women still had marks and bruises on their bodies as evidence,” Prof Krog said. The victims’ words, on the other hand, struggled to express the story their bodies told.

What are the nouns for that which one sees? What words are permissible in front of men? How does one process revulsion verbally? These are the barriers the victims – raised with Victorian reserve – faced while trying to express their trauma, Prof Krog explained.

The collusion of men

When the war ended, there was a massive drive to reconcile the Boers and the British. “Within this process of letting bygones be bygones,” Prof Krog said, “affidavits of severe violations by white men had no place. Through the collusion of men, prioritising reconciliation between two white male hierarchies, these affidavits were shelved, and, finally, had to suffer an embargo.”

“It is only when South Africa accepted a constitution based on equality and safety from violence,” Prof Krog said, “that the various levels of deeply-rooted brutality, violence, and devastation of men against the vulnerable in society seemed to burst like an evil boil into the open, leaving South African aghast in its toxic suppurations. As if, for many decades, we did not know it was there and multiplied.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept