Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

'Structures of Dominion and Democracy' by David Goldblatt at the Johannes Stegmann Art Gallery
2015-08-03

Photograph by David Goldblatt, On August 16 2012 South African Police shot striking mineworkers of the Lonmin platinum mines, killing 34 and wounding 78 within a radius of 350 metres of this koppie, where the men used to meet. Seventeen of the men, seeking shelter among boulders from police fire, were shot with seemingly lethal intent, some with their hands up in surrender, none were given medical assistance for their wounds. Beyond is the Lonmin smelter, which stood idle during the strike. Marikana, North-West Province, 11 May 2014.

The University of the Free State, in partnership with the Goodman Gallery, presents the exhibition, 'Structures of Dominion and Democracy', by renowned South African photographer David Goldblatt.  

This exhibition, which runs from 13 July to 7 August 2015 on the Bloemfontein Campus, is dedicated to the series, “Structures”, one of the major bodies of works by Goldblatt.  For over three decades, Goldblatt has travelled South Africa, photographing sites and structures weighted with historical narrative: monuments, private, religious and secular, which reveal something about the people who built them.  These sites allow us a glimpse into the everyday. Each place is a repository, a landscape containing an epic story that has involved whole communities: the experience sometimes told through the memorialising of remarkable individuals.

The exhibition, Structures of Dominion and Democracy, traverses two distinct eras in South Africa history. As Goldblatt explains: "Over the years, I have photographed South African structures, which I found eloquent, of the dominion which Whites gradually came to exert over all of South Africa and its peoples.  That time of domination began in 1660 when Jan van Riebeeck ordered a cordon to be erected of blockhouses and barriers that would exclude the indigenous population from access to the first European settlement in South Africa and its herds, lands, water, and grazing.  The time of domination ended on the 2nd of February 1990, when, on behalf of the government and the Whites of South Africa, President FW de Klerk effectively abdicated from power.  Beginning in 1999 and continuing to the present, I have photographed some structures that are eloquent of our still nascent democracy.  In the belief that, in what we build we express much about what we value, I have looked at South African structures as declarations of our value systems, our ethos.”

Johannes Stegmann Art Gallery, UFS Sasol Library
University of the Free State
206 Nelson Mandela Ave
Bloemfontein

Gallery hours:  
Monday to Friday 08:30 – 16:30

Entrance: Free
Enquiries: 051 401 2706, dejesusav@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept