Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

Forgive and forget? Or remember and retaliate?
2015-10-08

Cover of the novel Kamphoer

Fact and fiction came together at the Bloemfontein Campus recently to discuss the traumatic repercussions of the South African War. The event forms part of a three-year project – headed by Prof Pumla Gobodo-Madikizela (University of the Free State Trauma, Forgiveness, and Reconciliation Studies) – which investigates transgenerational trauma in the aftermath of the South African War.

The discussion explored the theme, ‘Working through the Past: Reflections on the novel Kamphoer’.

Together, Emeritus Prof Chris van der Merwe (University of Cape Town) and the author of the novel, Dr Francois Smith (University of the Free State, Department Afrikaans and Dutch, German and French), engaged in a thought-provoking, insightful conversation, tracing themes of trauma and issues of forgiveness presented in Kamphoer. Prof Van der Merwe and Dr Smith demonstrated how both fiction and historical fact can inform our present, and guide us into the future.

Emeritus Prof Chris van der Merwe and Dr Francois Smith
discuss the novel Kamphoer and how the book relates to
current issues of transgenerational trauma.

“On a societal level,” Prof Van der Merwe said, “we need to work through trauma by putting it into words, and putting it into a narrative.” When it comes to historical trauma, should we forgive and forget, though? Or rather remember and retaliate? Neither, proposed Prof Van der Merwe. “What I want to plead for is the difficult challenge: remember and forgive.” But Prof Van der Merwe also pointed out that, although forgiveness blesses both the giver and receiver, it is an ongoing process.

Dr Smith agreed wholeheartedly. “One of the discoveries of my book is that forgiving is a continuous process. It’s not something that gets completed at a particular stage in your life. By the same token, you can’t say that you are ever able to leave the past behind.” These issues of trauma, forgiveness, the past versus the present, remembering and forgetting are all integral questions confronting the main character of the novel, Susan Nel .

They are also questions we, as a nation, are currently confronted with, too.

“At this moment in our society,” Prof Van der Merwe said, “we have enough killers. We have a greater need now for caring nurturers.”

 

 

 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept