Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

Harvard couple to present lectures on Biostatistics and Mathematics at the UFS
2015-12-07


Professor Donald Rubin

Prof Donald Rubin (John L. Loeb Professor of Statistics at Harvard University) and Elizabeth Zell (MStat - mathematical statistician in the Division of Bacterial Diseases) will visit the University of the Free State (UFS) where they will present lectures on their respective work.

Over his prestigious academic career, Prof Don Rubin’s 400 publications and 13 books have earned him around 180 000 citations at an h-index of 113. He is one of the most cited statisticians/mathematicians/economists/psychologists in the world over the last 10 -15 years. He has supervised 35 PhD candidates as sole-supervisor, 17 more as co-supervisor, with a further eight in the pipeline.

Prof Rubin who will meet with UFS academics in the Department of Mathematics and Actuarial Sciences will also deliver a lecture: Rerandomisation to improve covariate balance in experiments.

Randomised experiments are the “gold standard” for estimating causal effects, yet in practice, chance imbalances often exist in covariate distributions between treatment groups. If covariate data are available before units are exposed to treatments, these chance imbalances can be mitigated by first checking covariate balance before the physical experiment takes place. Provided a precise definition of imbalance has been specified in advance, unbalanced randomisations can be discarded, followed by a rerandomisation. This process can continue until a randomisation yielding balance according to the definition is achieved. By improving covariate balance, rerandomisation provides more precise and trustworthy estimates of treatment effects.

Prof Rubin received an honorary professorship from the Faculty of Natural and Agricultural Sciences at the UFS.


Elizabeth Zell

The lecture will take place on:
Date: Tuesday 8 December 2015
Time: 16:00
Venue: Albert Wessels Auditorium, Bloemfontein Campus

Zell earned her Master’s degree in Statistics at North Carolina State University, and for more than two decades, was an active bio-statistical researcher in various offices of the Centers for Disease Control (CDC). Since 2013, she has been the Principal Statistician and President of Stat-Epi Associates, Inc. Her 150+ publications have earned her 14 500 citations at an h-index of over 50. She is a Fellow of the American Statistical Association, and, in 2010, she received the Statistics Section Government Award for outstanding contributions to statistics and public health by the American Public Health Association. During her career at the CDC, she earned more than 20 CDC research awards and honours.

She will deliver two lectures at the UFS. The first is entitled A Potential Outcomes Approach to Documenting the Public Health Impact of the Introduction of PCV13 for the Prevention of Invasive Pneumococcal Disease. The topic of her second lecture is: Assessing the Effectiveness of Intrapartum Antibiotic Prophylaxis for Prevention of Early-Onset Group B Streptococcus Disease through Propensity Score Design

Elizabeth’s lectures will take place on:
Date: Wednesday 9 December 2015
Time: 10:45 and 13:00
Venue: West Block 111, Bloemfontein Campus

For more information, please contact Dr Michael von Maltitz at VMaltitzMJ@ufs.ac.za.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept